Skip to main content
Log in

Annual cycle and interannual variability in the tropical pacific as simulated by three versions of FGOALS

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-g1.0, FGOALS-g2 and FGOALSs2), which have participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), are presented in this paper.

The seasonal cycle of SST in the tropical Pacific is realistically reproduced by FGOALS-g2 and FGOALSs2, while it is poorly simulated in FGOALS-g1.0. Three feedback mechanisms responsible for the SST annual cycle in the eastern Pacific are evaluated. The ocean-atmosphere dynamic feedback, which is successfully reproduced by both FGOALS-g2 and FGOALS-s2, plays a key role in determining the SST annual cycle, while the overestimated stratus cloud-SST feedback amplifies the annual cycle in FGOALS-s2. Because of the serious warm bias existing in FGOALS-g1.0, the ocean-atmosphere dynamic feedback is greatly underestimated in FGOALS-g1.0, in which the SST annual cycle is mainly driven by surface solar radiation.

FGOALS-g1.0 simulates much stronger ENSO events than observed, whereas FGOALS-g2 and FGOALSs2 successfully simulate the observed ENSO amplitude and period and positive asymmetry, but with less strength. Further ENSO feedback analyses suggest that surface solar radiation feedback is principally responsible for the overestimated ENSO amplitude in FGOALS-g1.0. Both FGOALS-g1.0 and FGOALS-s2 can simulate two different types of El Ni-no events — with maximum SST anomalies in the eastern Pacific (EP) or in the central Pacific (CP) — but FGOALS-g2 is only able to simulate EP El Ni-no, because the negative cloud shortwave forcing feedback by FGOALS-g2 is much stronger than observed in the central Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J. Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Ashok, K., S. Behera, A. S. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its teleconnection. J. Geophys. Res., 112, C11007. doi: 10.1029/2006JC003798.

    Article  Google Scholar 

  • Bao, Q., G. Wu, Y. Liu, J. Yang, Z. Wang, and T. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30 (3), doi: 10.1007/s00376-012-2113-9.

  • Battisti, D., 1988: The dynamics and thermodynamics of a warming event in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 2889–2919.

    Article  Google Scholar 

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 4 (12), 1687–1712.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Olson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Briegleb, B. P., E. C. Hunke, C. M. Bitz, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004a: The sea ice simulation in the community climate system model, version two. NCAR Tech. Note NCAR/TN-455+STR, 34pp.

    Google Scholar 

  • Briegleb, B. P., C.M. Bitz, E. C. Hunke,W.H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004b: Scientific description of the sea ice component in the community climate system model, Version Three. NCAR Tech. Note NCAR/TN-463+STR, 70pp.

    Google Scholar 

  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA), Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Chang, P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere instability of relevant to seasonal cycle. J. Atmos. Sci., 51, 3627–3648.

    Article  Google Scholar 

  • Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, doi: 10.1175/JCLI-D-12-00575.1, in press.

    Google Scholar 

  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266.

    Article  Google Scholar 

  • de Szoeke, S. P., and S.-P. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean-atmosphere general circulation models. J. Climate, 21(11), 2573–2590. doi: 10.1175/2007jcli1975.1.

    Article  Google Scholar 

  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z.-L. Yang, and X. B. Zeng, 2006: The community land model and its climate statistics as a component of the community climate system model. J. Climate, 19, 2302–2324.

    Article  Google Scholar 

  • Guilyardi, E., 2005: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26(4), 329–348. doi: 10.1007/s00382-005-0084-6.

    Article  Google Scholar 

  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The los alamos sea ice model documentation and software user’s manual version 4.0. LA-CC-06-012. [Available online at http://oceans11.lanl.gov/trac/CICE/attachment/wiki/WikiStart/cicedoc.pdf?format=raw.]

    Google Scholar 

  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.

    Article  Google Scholar 

  • Kalnay, E. and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 85, 1631–1643.

    Article  Google Scholar 

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central Pacific types of El Niño. J. Climate., 22, 615–632. doi: 10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  • Kug, J.-S., F.-F. Jin, and S.-A. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515. doi: 10.1175/2008JCLI2624.1.

    Article  Google Scholar 

  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomaly during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi: 10.1029/2005GL022860.

    Article  Google Scholar 

  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18(3), 255–276.

    Article  Google Scholar 

  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi: 10.1029/2010GL044007.

    Google Scholar 

  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117pp.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013a: The flexible global oceanatmosphereland system model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013b: Evaluation of grid-point atmospheric model of IAP LASG, version 2.0 (GAMIL 2.0). Adv. Atmos. Sci., doi: 10.1007/s00376-013-2157-5.

    Google Scholar 

  • Li, T., 1997: Air-sea interactions of relevance to the ITCZ: the analysis of coupled instabilities and experiments in a hybrid coupled GCM. J. Atmos. Sci., 54, 134–147.

    Article  Google Scholar 

  • Li, T., and S. G. H. Philander, 1996: On the annual cycle of the equatorial eastern Pacific. J. Climate, 9, 2986–2998.

    Article  Google Scholar 

  • Li, T., and S. G. H. Philander, 1997: On the seasonal cycle of the equatorial Atlantic Ocean. J. Climate, 10, 813–817.

    Article  Google Scholar 

  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20 (18), 4497–4525, doi: 10.1175/jcli4272.1.

    Article  Google Scholar 

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea-surface-temperature-gradients in forcing lowlevel winds and convergence in the tropics. J. Atmos. Sci., 44(17), 2418–2436.

    Article  Google Scholar 

  • Liu, H. L., Y. Q., Yu, W. Li, X. H. Zhang, 2004: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 1–128. (in Chinese)

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2, Acta Meteorologica Sinica, 26(3), 318–329, doi: 10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Liu, L., W. Yu, and T. Li, 2011: Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean dipole diagnosed from 23 WCRP CMIP3 models. J. Climate, 24(18), 4941–4958, doi: 10.1175/2011JCLI4041.1.

    Article  Google Scholar 

  • Liu, Y., J. Hu, B. He, Q. Bao, A. Duan, and G. Wu, 2013: Seasonal evolution of the subtropical anticyclones in a climate system model FGOALS-s2. Adv. Atmos. Sci., 30(3), doi: 10.1007/s00376-012-2154-0.

    Google Scholar 

  • Ma, C. C., C. R. Mechoso, A. W. Robertson, and A. Arakawa, 1996: Peruvian stratus clouds and the tropical Pacific circulation: A coupled ocean atmosphere GCM study. J. Climate, 9(7), 1635–1645.

    Article  Google Scholar 

  • Mechoso, and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.

    Article  Google Scholar 

  • Neelin, J. D., and Coauthors 1992: Tropical air-sea interaction in general circulation models. Climate Dyn., 7, 73–104.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). Tech. Rep. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO, 174pp.

    Google Scholar 

  • Pan, Y. H., and A. H. Oort, 1983: Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–73 period. Mon. Wea. Rev., 111, 1244–1258.

    Article  Google Scholar 

  • Philander, S. G., 1990: El Niño, La Niña and the Southern Oscillation. Academic Press, 293pp.

    Google Scholar 

  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972.

    Article  Google Scholar 

  • Rasmusson, E., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD00267.

    Article  Google Scholar 

  • Sun, D.-Z., Y. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 1287–1304.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu, Y. Q. Yu, and H. T. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science China (A), 47(Suppl.), 4–21.

    Article  Google Scholar 

  • Xiang, B., B. Wang, Q. Ding, F.-F. Jin, X. Fu, and H.-J. Kim, 2011: Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dyn., 39, 1413–1430, doi: 10.1007/s00382-011-1164-4.

    Article  Google Scholar 

  • Xie, S.-P., 1994: On the genesis of the equatorial annual cycle. J. Climate, 7, 2008–2013.

    Article  Google Scholar 

  • Xie, S.-P., 1995: Interaction between annual and interannual variations in the equatorial Pacific. J. Phys. Oceanogr., 25, 1930–1941.

    Article  Google Scholar 

  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin 2009: El Niño in a changing climate. Nature, 461, 511–514. doi: 10.1038/nature08316.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yu, Y. Q., W. P. Zheng, H. L. Liu, and X. H. Zhang, 2007: The LASG coupled climate system model FGCM-1.0. Chinese J. Geophys., 50, 1454–1455. (in Chinese)

    Google Scholar 

  • Yu, Y. Q., H. Zhi, B. Wang, H. Wan, H. L. Liu, W. Li, T. J. Zhou, and W. P. Zheng, 2008: Coupled model simulations of climate changes in the 20th Century and Beyond, Adv. Atmos. Sci., 25, 641–654.

    Article  Google Scholar 

  • Yu, Y. Q., W. P. Zheng, B. Wang, L. J. Li, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphereland system model. Adv. Atmos. Sci., 28(1), 99–117, doi: 10.1007/s00376-010-9112-5.

    Article  Google Scholar 

  • Zhang, W., J. Li, and F.-F. Jin, 2009: Spatial and temporal features of ENSO meridional scales. Geophys. Res. Lett., 36, L15605, doi: 10.1029/2009GL038672.

    Article  Google Scholar 

  • Zhang, Y.-C., and W. B. Rossow, 2002: New ISCCP global radiative flux data products. GEWEX News, 12(4), 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Yu  (俞永强).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., He, J., Zheng, W. et al. Annual cycle and interannual variability in the tropical pacific as simulated by three versions of FGOALS. Adv. Atmos. Sci. 30, 621–637 (2013). https://doi.org/10.1007/s00376-013-2184-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2184-2

Key words

Navigation