Skip to main content
Log in

Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A reasonable past millennial climate simulation relies heavily on the specified external forcings, including both natural and anthropogenic forcing agents. In this paper, we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). The model presents a reasonable performance in comparison with reconstructions of surface temperature. Differentiated from significant changes in the 20th century at the global scale, changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere. Seasonally, modeled significant changes are more pronounced during the wintertime at higher latitudes. This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback. The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period, especially at decadal timescales. Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability. The model response to specified external forcings is modulated by cloud radiative forcing (CRF). The CRF acts against the fluctuations of external forcings. Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period, but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426(6964), 274–278.

    Article  Google Scholar 

  • Ammann, C. M., F. Joos, D. S. Schimel, B. L. Otto-Bliesner, and R. A. Tomas, 2007: Solar influence on climate during the past millennium: Results from transient simulations with the NCAR climate system model. Proc. the National Academy of Sciences, 104(10), 3713–3718.

    Article  Google Scholar 

  • Arking, A., and D. Ziskin, 1994: Relationship between clouds and sea-surface temperatures in the western tropical pacific. J. Climate, 7(6), 988–1000.

    Article  Google Scholar 

  • Bauer, E., M. Claussen, V. Brovkin, and A. Huenerbein, 2003: Assessing climate forcings of the Earth system for the past millennium. Geophys. Res. Lett., 30(6), 1276–1279.

    Article  Google Scholar 

  • Bertrand, C., M. F. Loutre, M. Crucifix, and A. Berger, 2002: Climate of the last millennium: A sensitivity study. Tellus (A), 54(3), 221–244.

    Article  Google Scholar 

  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15(22), 3123–3149.

    Article  Google Scholar 

  • Briegleb, B., C. Bitz, E. Hunke, W. Lipscomb, M. Holland, J. Schramm, and R. Moritz. 2004: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR, National Center for Atmospheric Research, Boulder, CO, 78pp.

    Google Scholar 

  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424(6946), 271–276.

    Article  Google Scholar 

  • Crowley, T. J., 2000: Causes of climate change over the past 1000 years. Science, 289(5477), 270–277.

    Article  Google Scholar 

  • Crowley, T. J., S. K. Baum, K. Y. Kim, G. C. Hegerl, and W. T. Hyde, 2003: Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett., 30(18), doi: 10.1029/2003GL017801.

    Google Scholar 

  • Deser, C., and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22(2), 396–413.

    Article  Google Scholar 

  • Emile-Geay, J., M. Cane, R. Seager, A. Kaplan, and P. Almasi, 2007: El Niño as a mediator of the solar influence on climate. Paleoceanography, 22(3), doi: 10.1029/2006PA001304.

    Google Scholar 

  • Gent, P., and Coauthors, 2011: The community climate system model version 4. J. Climate, 24, 4973–4991.

    Article  Google Scholar 

  • González-Rouco, F. J., and Coauthors, 2011: Medieval climate anomaly to little ice age transition as simulated by current climate models. Medieval Climate Anomaly, Pages News, 19(1), 7–8.

    Google Scholar 

  • Goosse, H., H. Renssen, A. Timmermann, and R. S. Bradley, 2005a: Internal and forced climate variability during the last millennium: A model-data comparison using ensemble simulations. Quaternary Science Reviews, 24(12–13), 1345–1360.

    Article  Google Scholar 

  • Goosse, H., T. J. Crowley, E. Zorita, C. M. Ammann, H. Renssen, and E. Driesschaert, 2005b: Modelling the climate of the last millennium: What causes the differences between simulations? Geophys. Res. Lett., 32, L06710, doi: 10.1029/2005GL022368.

    Article  Google Scholar 

  • Goosse, H., J. Guiot, M. E. Mann, S. Dubinkina, and Y. Sallaz-Damaz, 2011: The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation. Global and Planetary Change, 19(1), 12–13.

    Google Scholar 

  • Goosse, H., P. Y. Barriat, W. Lefebvre, M. F. Loutre, and V. Zunz, 2013: Introduction to climate dynamics and climate modeling. [Available online at http://www.climate.be/textbook.]

    Google Scholar 

  • Graham, N., and Coauthors, 2007: Tropical Pacific-midlatitude teleconnections in medieval times. Climatic Change, 83(1), 241–285, doi: 10.1007/s10584-007-9239-2.

    Article  Google Scholar 

  • Guiot, J., and C. Corona, 2010: Growing season temperatures in Europe and climate forcings over the past 1400 years. PloS one, 5(4), e9972, doi: 10.1371/journal. pone.0009972.

    Article  Google Scholar 

  • Hegerl, G., T. Crowley, S. Baum, K. Kim, and W. Hyde, 2003: Detection of volcanic, solar and greenhouse gas signals in paleoreconstructions of northern hemispheric temperature. Geophys. Res. Lett., 30, doi: 10.1029/2002GL016635.

  • Hegerl, G., T. Crowley, M. Allen, W. Hyde, H. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650–666.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

  • Jansen, E., and Coauthors, 2007: Palaeoclimate. Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon et al., Eds, Cambridge University Press, Cambridge, 433–497.

    Google Scholar 

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model. Adv. Atmos. Sci., 16(2), 197–215.

    Article  Google Scholar 

  • Jones, P., and Coauthors, 2009: High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. The Holocene, 19(1), 3–49.

    Article  Google Scholar 

  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7(4), 559–565.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2006: Assessment of twentieth-century regional surface temperature trends using the GFDL CM2 coupled models. J. Climate, 19(9), 1624–1651.

    Article  Google Scholar 

  • Lee, W. H., S. F. Iacobellis, and R. C. J. Somerville, 1997: Cloud radiation forcings and feedbacks: General circulation model tests and observational validation. J. Climate, 10(10), 2479–2496.

    Article  Google Scholar 

  • Li, L., B. Wang, Y. Wang, and W. Hui, 2007: Improvements in climate simulation with modifications to the Tiedtke convective parameterization in the grid-point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci., 24(2), 323–335, doi: 10.1007/s00376-007-0323-3.

    Article  Google Scholar 

  • Li, Z. X., and S. Conil, 2003: A 1000-year simulation with the IPSL ocean-atmosphere coupled model. Annals of Geophysics, 46(1), 39–46.

    Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21(5), 675–690.

    Article  Google Scholar 

  • Liu, J., B. Wang, H. Wang, X. Kuang, and R. Ti, 2011: Forced response of the East Asian summer rainfall over the past millennium: Results from a coupled model simulation. Climate Dyn., 36(1), 323–336.

    Article  Google Scholar 

  • Mann, M. E., 2002: The value of multiple proxies. Science, 297(5586), 1481–1482, doi: 10.1126/science.1074318.

    Article  Google Scholar 

  • Mann, M. E., and Coauthors, 2009: Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256–1260, doi: 10.1126/science.1177303.

    Article  Google Scholar 

  • Man, W. M., and T. J. Zhou, 2011: Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chinese Science Bulletin, 56, 3042–3052.

    Article  Google Scholar 

  • Man, W. M., T. J. Zhou, J. Zhang, and B. Wu, 2011: The 20th century climate simulated by LASG/IAP climate system model FGOALS gl. Acta Meteorologica Sinica, 69(4), 644–654. (in Chinese)

    Google Scholar 

  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlen, 2005: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433(7026), 613–617.

    Article  Google Scholar 

  • Norris, J. R., 2005: Multidecadal changes in nearglobal cloud cover and estimated cloud cover radiative forcing. J. Geophys. Res., 110(D08206), doi: 10.1029/2004JD005600.

    Google Scholar 

  • NRC (Natinal Research Council), 2006: National Research Council Committee: Surface Temperature Reconstruction for the Last 2,000 Years. National Academies Press, Washington, D.C., 145pp.

    Google Scholar 

  • Peng, Y., Y. Xu, and L. Jin, 2009: Climate changes over eastern China during the last millennium in simulations and reconstructions. Quaternary International, 208(1–2), 11–18, doi: 10.1016/j.quaint.2009.02.013.

    Article  Google Scholar 

  • Philander, S. G. H., D. Gu, D. Halpern, G. Lambert, N. C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9(12), 2958–2972.

    Article  Google Scholar 

  • Phipps, S. J., 2010: The CSIRO Mk3L climate system v1.2. Tech. Rep. No. 4, Antarctic Climate & Ecosystems CRC, Hobart, Tasmania, Australia, 122pp.

    Google Scholar 

  • Quaas, J., O. Boucher, J. L. Dufresne, and H. Le Trent, 2004: Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930–1989 period. Climate Dyn., 23(7–8), 779–789.

    Article  Google Scholar 

  • Raddatz, T., and Coauthors, 2007: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the 21st century? Climate Dyn., doi: 10.1007/s00382-007-0247-8.

    Google Scholar 

  • Schmidt, G. A., and Coauthors, 2006: Present day atmospheric simulations using GISS ModelE: Comparison to in-situ, satellite and reanalysis data. J. Climate, 19, 153–192, doi: 10.1175/JCLI3612.1.

    Article  Google Scholar 

  • Schmidt, G., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geoscientific Model Development, 4, 33–45, doi: 10.5194.gmd-4-33-2011.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334–1337.

    Article  Google Scholar 

  • Servonnat, J., P. Yiou, M. Khodri, D. Swingedouw, and S. Denvil, 2010: Influence of solar variability, CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model. Climate of the Past, 6(4), 445–460.

    Article  Google Scholar 

  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 international geophysical year. Nature, 457(7228), 459–462, doi: 10.1038/nature07669.

    Article  Google Scholar 

  • Steinhilber, F., J. Beer, and C. Fröhlich, 2009: Total solar irradiance during the holocene. Geophys. Res. Lett., 36, doi: 10.1029/2009GL040142.

  • Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290(5499), 2133–2137.

    Article  Google Scholar 

  • Swingedouw, D., L. Terray, C. Cassou, A. Voldoire, D. Salas-Mélia, and J. Servonnat, 2011: Natural forcing of climate during the last millennium: Fingerprint of solar variability. Climate Dyn., 36(7), 1349–1364.

    Article  Google Scholar 

  • Tapping, K., D. Boteler, P. Charbonneau, A. Crouch, A. Manson, and H. Paquette, 2007: Solar magnetic activity and total irradiance since the Maunder Minimum. Solar Physics, 246(2), 309–326.

    Article  Google Scholar 

  • Tett, S. F. B., P. A. Stott, M. R. Allen, W. J. Ingram, and J. F. B. Mitchell, 1999: Causes of twentieth-century temperature change near the Earth’s surface. Nature, 399(6736), 569–572.

    Article  Google Scholar 

  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to twentieth century temperature change. J. Geophys. Res., 107(D16), doi: 10.1029/2000JD000028.

    Google Scholar 

  • Verleyen, E., and Coauthors, 2011: Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews, 104(4), 199–212, doi: 10.1016/j.earscirev.2010.10.006.

    Article  Google Scholar 

  • Wang, S. W., Z. H. Xie, J. N. Cai, J. H. Zhu, and D. Y. Gong, 2002: Investigation of the global mean temperature changes during the past 1000 years. Progress in Natural Science, 12, 1145–1149. (in Chinese)

    Google Scholar 

  • Wen, X. Y., T. J. Zhou, S. W. Wang, B. Wang, H. Wan, and J. Li, 2007: Performance of a reconfigured atmospheric general circulation model at low resolution. Adv. Atmos. Sci., 24(4), 712–728, doi: 10.1007/s00376-007-0712-7.

    Article  Google Scholar 

  • Xin, X. G., T. W. Wu, J. L. Li, Z. Z. Wang, W. P. Li, and F. H. Wu, 2013: How well dose BCC CSM1.1 reproduce the 20th century climate change over China? Atmos. Oceanic Sci. Lett., 6(1), 21–26.

    Google Scholar 

  • Yu, R. C., M. H. Zhang, and R. D. Cess, 1999: Analysis of the atmospheric energy budget: A consistency study of available data sets. J. Geophys. Res., 104(D8), 9655–9661.

    Article  Google Scholar 

  • Zhang, J., T. Zhou, W. M. Man, and L. Li, 2009: The transient simulation of little ice age by LASG/IAP climate system model FGOALS gl. Quaternary Sciences, 29(6), 1125–1134. (in Chinese)

    Google Scholar 

  • Zhou, T. J., B. Wu, X. Y. Wen, L. J. Li, and B. Wang, 2008: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25(4), 655–672, doi: 10.1007/s00376-008-0655-7.

    Article  Google Scholar 

  • Zhou, T. J., W. M. Man, and J. Zhang, 2009: Progress in numerical simulations of the climate over the last millennium Advances in Earth Science, 24, 469–476. (in Chinese)

    Google Scholar 

  • Zhou, T. J., B. Li, W.M. Man, L. X. Zhang, and J. Zhang, 2011: A comparison of the medieval warm period, little ice age and 20th century warming simulated by the FGOALS climate system model. Chinese Science Bulletin, 56, 3028–3041.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang  (张 洁).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, L., Zhou, T. et al. Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model. Adv. Atmos. Sci. 30, 699–712 (2013). https://doi.org/10.1007/s00376-013-2178-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2178-0

Key words

Navigation