Skip to main content
Log in

Performance of FGOALS-s2 in simulating intraseasonal oscillation over the south Asian monsoon region

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The capability of the current version of the air-sea coupled climate model, the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), in simulating the boreal summer intraseasonal oscillation (ISO) over the south Asian monsoon (SAM) region is diagnosed, in terms of dominant period, propagation direction, and vertical structure. Results show that the coupled model can reasonably simulate the main features of observed ISO propagation compared to the chosen AGCM. These features include the eastward movement of intraseasonal 850-hPa zonal wind over the Arabian Sea and Bay of Bengal, the vertical structure in active phases, and the realistic phase relationship between ISO and underlying SST. However, the eastward propagation cannot be reproduced in the uncoupled model. This suggests that air-sea interaction is important in generating intraseasonal variability over the SAM region. Nevertheless, some deficiencies remain in the coupled model, which may relate to physical processes depicted by the cumulus parameterization and PBL schemes within its atmospheric component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) Monthly Precipitation Analysis (1979-present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and Its Performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general-circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary-layer. Tellus (A), 47, 197–220.

    Article  Google Scholar 

  • Chao, W. C., and L. Deng, 1998: Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55, 690–709.

    Article  Google Scholar 

  • Edwards, J. M., and A. A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–720.

    Article  Google Scholar 

  • Fu, X., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model. J. Climate, 17, 1263–1271.

    Article  Google Scholar 

  • Fu, X., B. Wang, and T. Li, 2002: Impacts of air-sea coupling on the simulation of the mean Asian summer monsoon in the ECHAM4 model. Mon. Wea. Rev., 130, 2889–2903.

    Article  Google Scholar 

  • Fu, X., B. Wang, D. E. Waliser, and L. Tao, 2007: Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations. J. Atmos. Sci., 64, 157–174.

    Article  Google Scholar 

  • Fu, X., B. Yang, G. Bao, and B. Wang, 2008: Sea surface temperature feedback extends the predictability of tropical intraseasonal oscillation. Mon. Wea. Rev., 136, 577–597.

    Article  Google Scholar 

  • Hayashi, Y., 1982: Space-time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60, 156–171.

    Google Scholar 

  • Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hendon, H. H., B. Liebmann, and M. E. Newman, 2000: Mediumrange forecasts errors associated with active episodes of the Madden-Julian oscillation. Mon. Wea. Rev., 128, 69–85.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 1997: The global precipitation climatology project (GPCP) version 1 dataset. Bull. Amer. Meteor. Soc., 78, 5–20.

    Article  Google Scholar 

  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382.

    Article  Google Scholar 

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039.

    Article  Google Scholar 

  • Kang, I. S., C. H. Ho, Y. K. Lim, and K. M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322–340.

    Article  Google Scholar 

  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.

    Article  Google Scholar 

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436.

    Article  Google Scholar 

  • Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367.

    Article  Google Scholar 

  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606.

    Article  Google Scholar 

  • Lee, M. I., I. S. Kang, B. E. Maps, and P. J. Webster, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Japan, 81, 963–992.

    Article  Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690.

    Article  Google Scholar 

  • Lin, J. L., K. M. Weickmann, G. N. Kiladis, B. E. Mapes, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M.-I. Lee, 2008a: Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J. Climate, 21, 4541–4567.

    Article  Google Scholar 

  • Lin, J. L., M.-I. Lee, D.-H. Kim, I.-S. Kang, and D. Frierson, 2008b: The impacts of convective parameterization and moisture triggerring on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883–909.

    Article  Google Scholar 

  • Liu, H. L., X. Zhang, W. Li, Y. Yu, and R. Yu, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu, P., B. Wang, K. Sperber, and J. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke convection scheme. J. Climate, 18, 3007–3020.

    Article  Google Scholar 

  • Liu, Y. M., Q. Bao, A. M. Duan, Z. A. Qian, and G. X. Wu, 2007: Recent progress in the impact of the Tibetan Plateau on climate in China. Adv. Atmos. Sci., 24, 1060–1076, doi: 10.1007/s00376-007-1060-3.

    Article  Google Scholar 

  • Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate., 18, 2388–2402.

    Article  Google Scholar 

  • Nakazawa, T., 1992: Seasonal phase lock of intraseasonal variation during the Asian summer monsoon. J. Meteor. Soc. Japan., 70, 257–273.

    Google Scholar 

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo., 206, Reading, England, 41pp.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Schiffer, R. A., and W. B. Rossow, 1985: ISCCP global radiance data set: A new resource for climate research. Bull. Amer. Meteor. Soc., 66, 1498–1505.

    Article  Google Scholar 

  • Seo, K. H., and W. Wang, 2010: The Madden-Julian oscillation simulated in the NCEP climate forecast system model: The importance of stratiform Heating. J Climate, 23, 4770–4793.

    Article  Google Scholar 

  • Song, X. L., 2005: The evaluation analysis of two kinds of mass flux cumulus parameterizations in climate simulation, Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 119–145. (in Chinese)

    Google Scholar 

  • Sun, Z., and L. Rikus, 1999a: Improved application of ESFT to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303.

    Article  Google Scholar 

  • Sun, Z., and L. Rikus, 1999b: Parameterization of effective radius of cirrus clouds and its verification against observations. Quart. J. Roy. Meteor. Soc., 125, 3037–3056.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/TaylorCMIP5 design.pdf.]

    Google Scholar 

  • Teng, H. Y., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J. Climate, 16, 3572–3584.

    Article  Google Scholar 

  • Waliser, D. E., K. E. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden-Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423–446.

    Article  Google Scholar 

  • Wang, B., 2005: Theories. Intraseasonal Variability of the Atmosphere-ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, Heidelberg, Germany, 436pp.

    Google Scholar 

  • Wang, B., and X. H. Xu, 1997: Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10, 1071–1085.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913–927.

    Article  Google Scholar 

  • Wu, R., and J. L. Kinter, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and East-West Contrast. J. Geophys. Res., 115, D06101, doi: 10.1029/2009JD012579.

  • Yang, J., B. Wang, B. Wang, and L. J. Li, 2009: The East Asia-western North Pacific boreal summer intraseasonal oscillation simulated in GAMIL 1.1.1. Adv. Atmos. Sci., 26(3), 480–492, doi: 10.1007/s00376-009-0480-7.

    Article  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan., 57, 227–242.

    Google Scholar 

  • Yasunari, T., 1980: A quasi-stationary appearance of the 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan., 59, 336–354.

    Google Scholar 

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 64pp.

    Google Scholar 

  • Zhang, C., and Coauthors, 2006: Simulations of the Madden-Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Duan  (段安民).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Duan, A. & Wu, G. Performance of FGOALS-s2 in simulating intraseasonal oscillation over the south Asian monsoon region. Adv. Atmos. Sci. 30, 607–620 (2013). https://doi.org/10.1007/s00376-013-2156-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2156-6

Keywords

Navigation