Skip to main content
Log in

Summer persistence barrier of sea surface temperature anomalies in the central western north pacific

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The persistence barrier of sea surface temperature anomalies (SSTAs) in the North Pacific was investigated and compared with the ENSO spring persistence barrier. The results show that SSTAs in the central western North Pacific (CWNP) have a persistence barrier in summer: the persistence of SSTAs in the CWNP shows a significant decline in summer regardless of the starting month. Mechanisms of the summer persistence barrier in the CWNP are different from those of the spring persistence barrier of SSTAs in the central and eastern equatorial Pacific. The phase locking of SSTAs to the annual cycle does not explain the CWNP summer persistence barrier.

Remote ENSO forcing has little linear influence on the CWNP summer persistence barrier, compared with local upper-ocean process and atmospheric forcing in the North Pacific. Starting in wintertime, SSTAs extend down to the deep winter mixed layer then become sequestered beneath the shallow summer mixed layer, which is decoupled from the surface layer. Thus, wintertime SSTAs do not persist through the following summer. Starting in summertime, persistence of summer SSTAs until autumn can be explained by the atmospheric forcing through a positive SSTAs-cloud/radiation feedback mechanism because the shallow summertime mixed layer is decoupled from the temperature anomalies at depth, then the following autumn-winter-spring, SSTAs persist. Thus, summer SSTAs in the CWNP have a long persistence, showing a significant decline in the following summer. In this way, SSTAs in the CWNP show a persistence barrier in summer regardless of the starting month.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122–137.

    Article  Google Scholar 

  • Alexander, M. A., and J. D. Scott, 2001: Winter-to-winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies. Prog. Oceanogr., 49, 41–61.

    Article  Google Scholar 

  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055.

    Article  Google Scholar 

  • An, S. I., and B. Wang, 2005: The forced and intrinsic low-frequency modes in the North Pacific. J. Climate, 18, 876–885.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Ni≈no Modoki and its possible teleconnection. J. Geophys. Res., 112(C11007), doi: 10.1029/2006JC003798.

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    Article  Google Scholar 

  • Chen, J. M., T. Li, and C. F. Shih, 2007: Fall persistence barrier of sea surface temperature in the South China Sea associated with ENSO. J. Climate, 20, 158–172.

    Article  Google Scholar 

  • Clarke, A. J., and S. van Gorder, 1999: The connection between the boreal spring Southern Oscillation PB and biennial variability. J. Climate, 12, 610–620.

    Article  Google Scholar 

  • Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8, 233–246.

    Article  Google Scholar 

  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperature variations. J. Climate, 8, 1677–1680.

    Article  Google Scholar 

  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate, 16, 57–72.

    Article  Google Scholar 

  • Ding, R., and J. Li, 2009: Decadal and seasonal dependence of North Pacific sea surface temperature persistence. J. Geophys. Res., 114 (D01105), doi: 10.1029/2008JD010723.

  • Ding, R., and J. Li, 2011: Winter persistence barrier of sea surface temperature in the northern tropical Atlantic associated with ENSO. J. Climate, 24, doi: 10.1175/2011JCLI3784.1.

  • Duan, W. S., and R. Zhang, 2010: Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model. Adv. Atmos. Sci., 27, 1003–1013, doi: 10.1007/s00376-009-9166-4.

    Article  Google Scholar 

  • Duan, W. S., X. Liu, K. Y. Zhu, and M. Mu, 2009: Exploring initial errors that cause a significant spring predictability barrier for El Niño events. J. Geophys. Res., 114 (C04022), doi: 10.1029/2008JC004925.

  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air-sea feedback in middle latitudes. Rev. Geophys., 23, 357–390.

    Article  Google Scholar 

  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part 2. Application to sea-surface temperature variability and thermocline variability. Tellus, 29, 289–305.

    Article  Google Scholar 

  • Hanawa, K., and S. Sugimoto, 2004: “Reemergence” areas of winter sea surface temperature anomalies in the world’s oceans. Geophys. Res. Lett., 31, L10303, doi: 10.1029/2004GL019904.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kao, H.-Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and Central-Pacific types of El Niño. J. Climate, 22, 615–632.

    Article  Google Scholar 

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res., 108(C3), 3079, doi: 10.1029/2000JC000736.

    Article  Google Scholar 

  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.

    Article  Google Scholar 

  • Kushnir, Y., and N.-C. Lau, 1992: The general circulation model response to a North Pacific SST anomaly: Dependence on time scale and pattern polarity. J. Climate, 5, 271–283.

    Article  Google Scholar 

  • Lau, K. M., and S. Yang, 1996: The Asian monsoon and predictability of the tropical ocean-atmosphere system. Quart. J. Roy. Meteor. Soc., 122, 945–957.

    Google Scholar 

  • Lau, N. C., and M. J. Nath, 1990: A general circulation model study of the atmospheric response to extratropical SST anomalies observed in 1950–79. J. Climate, 3, 965–989.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 2036–2057.

    Article  Google Scholar 

  • Mantua, J. N., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc., 78, 1069–1079, doi: 10.1175/1520-0477(1997)078〈1069:APICOW〉2.0.CO;2

    Article  Google Scholar 

  • Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: Theories, observations and ecosystem impacts. Prog. Oceanogr., 47, 257–260.

    Article  Google Scholar 

  • Monterey, G. I., and S. Levitus, 1997: Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, US Gov. Printing Office, Washington, DC., 92pp.

    Google Scholar 

  • Mu, M., H. Xu, and W. S. Duan, 2007: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane Model. Geophys. Res. Lett., 34 (L03709), doi: 10.1029/2006GL-27412.

  • Namias, J., and R. M. Born, 1970: Temporal coherence in North Pacific sea-surface temperature patterns. J. Geophys. Res., 75, 5952–5955.

    Article  Google Scholar 

  • Namias, J., and R. M. Born, 1974: Further studies of temporal coherence in North Pacific sea surface temperatures. J. Geophys. Res., 79, 797–798.

    Article  Google Scholar 

  • Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of clouds in summertime atmosphere-ocean interactions over the North Pacific. J. Climate, 11, 2482–2490.

    Article  Google Scholar 

  • Pan, Y. H., and A. H. Oort, 1990: Correlation analyses between sea surface temperature anomalies in the eastern equatorial Pacific and the World Ocean. Climate Dyn., 4, 191–205.

    Google Scholar 

  • Park, S., M. A. Alexander, and C. Deser, 2006: The impact of cloud radiative feedback, remote ENSO forcing, and entrainment on the persistence of North Pacific sea surface temperature anomalies. J. Climate, 19, 6243–6261.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.

    Article  Google Scholar 

  • Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Niño/Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985–2004.

    Google Scholar 

  • Trenberth, K., and D. J. Shea, 1987: On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115, 3078–3096.

    Article  Google Scholar 

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14291–14324.

    Article  Google Scholar 

  • Troup, A. J., 1965: The “southern oscillation”. Quart. J. Roy. Meteor. Soc., 91, 490–506.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 612, 2961–3012.

    Article  Google Scholar 

  • Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32 (L24702), doi: 10.1029/2005GL024169.

  • Wallace, J. M., C. Smith, and Q. Jiang, 1990: Spatial patterns of atmosphere-ocean interaction in the northern winter. J. Climate, 3, 990–998.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–925.

    Article  Google Scholar 

  • White, W. B., 1995: Design of a global observing system for gyrescale upper ocean temperature variability. Prog. Oceanogr., 36, 169–217.

    Article  Google Scholar 

  • Wright, P. B., 1979: Persistence of rainfall anomalies in the central Pacific. Nature, 277, 371–374.

    Article  Google Scholar 

  • Wu, R., and J. L. Kinter, 2010: Atmosphere-ocean relationship in the midlatitude North Pacific: Seasonal dependence and east-west contrast. J. Geophys. Res., 115, D06101, doi: 10.1029/2009JD012579.

  • Xiao, D., and J. Li, 2007: Spatial and temporal characteristics of the decadal abrupt changes of global atmosphere-ocean system in the 1970s. J. Geophys. Res., 112 (D24S22), doi: 10.1029/2007JD008956.

  • Xiao, D., J. Li, and P. Zhao, 2011: Four-dimensional structures and physical process of the decadal abrupt changes of the northern extratropical oceanatmosphere system in 1980s. Int. J. Climatol., 31, doi: 10.1002/joc.2326.

  • Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus, 46, 512–528.

    Article  Google Scholar 

  • Yeh, S.-W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511–514.

    Article  Google Scholar 

  • Yu, J. Y., 2005: Enhancement of ENSO’s PB by biennial variability in a coupled atmosphere-ocean general circulation model. Geophys. Res. Lett., 32 (L113707), doi: 10.1029/2005GL023406.

  • Yu, J. Y., H. Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for central-Pacific and eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337–344.

    Article  Google Scholar 

  • Zhang, Y., J. M. Wallace, and N. Iwasaka, 1996: Is climate variability over the North Pacific a linear response to ENSO? J. Climate, 9, 1468–1478.

    Article  Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020.

    Article  Google Scholar 

  • Zhang, Y., J. R. Norris, and J. M. Wallace, 1998: Seasonality of large scale atmosphere-ocean interaction over the North Pacific. J. Climate, 11, 2473–2481.

    Article  Google Scholar 

  • Zhao, X., and J. Li, 2009: Possible causes for the persistence barrier of SSTA in the South China Sea and the vicinity of Indonesia. Adv. Atmos. Sci., 26, 1125–1136, doi: 10.1007/s00376-009-8165-9.

    Article  Google Scholar 

  • Zhao, X., and J. Li, 2010: Winter-to-winter recurrence of SSTA in the Northern Hemisphere. J. Climate, 23, 3835–3854, doi: 10.1175/2009JCLI2583.1.

    Article  Google Scholar 

  • Zhao, X., and J. Li, 2012: Winter-to-winter recurrence and non-winter-to-winter recurrence of SST anomalies in the central North Pacific. J. Geophys. Res, 117, C05027, doi: 10.1029/2011JC007845.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li  (李建平).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Li, J. & Zhang, W. Summer persistence barrier of sea surface temperature anomalies in the central western north pacific. Adv. Atmos. Sci. 29, 1159–1173 (2012). https://doi.org/10.1007/s00376-012-1253-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1253-2

Key words

Navigation