Skip to main content
Log in

A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The study investigated the effects of global direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, using the CAM3 developed by NCAR. The results showed that carbonaceous aerosols cause negative forcing at the top of the atmosphere (TOA) and surface under clear sky conditions, but positive forcing at the TOA and weak negative forcing at the surface under all sky conditions. Hence, clouds could change the sign of the direct radiative forcing at the TOA, and weaken the forcing at the surface. Carbonaceous aerosols have distinct effects on the summer climate in East Asia. In southern China and India, it caused the surface temperature to increase, but the total cloud cover and precipitation to decrease. However, the opposite effects are caused for most of northern China and Bangladesh. Given the changes in temperature, vertical velocity, and surface streamflow caused by carbonaceous aerosol in this simulation, carbonaceous aerosol could also induce summer precipitation to decrease in southern China but increase in northern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont, 2004: A technology-based emissions global inventory of black and organic carbon from combustion. J. Geophys. Res., 109(D14203), doi: 10.1029/2003JD003697.

  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 7603–7612.

    Google Scholar 

  • Charlson, R. J., and J. Heintzenberg, Eds., 1995: Aerosol Forcing of Climate. Report of the Dehlem Workshop on Aerosol Forcing, John Wiley & Sons, New York, 416pp.

  • Chung, S. H., 2004: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110(D11102), doi: 10.1029/2004JD005441.

  • Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110(D11102), doi: 10.1029/2004JD005441.

  • Collins, W. D., and Coauthors, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J. F. Lamarque, and C. S. Zender, 2002: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res., 107, doi: 10.1029/2001JD001365.

  • Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, and B. P. Briegleb, 2005: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19, 2144–2161.

    Article  Google Scholar 

  • Fuller, K. A., W. C. Malm, and S. M. Kreidenweis, 1999: Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res., 104(15), 941–954.

    Google Scholar 

  • Gu, Y., K. N. Liou, Y. Xue, C. R. Mechoso, W. Li, and Y. Luo, 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111(D15201), doi: 10.1029/2005JD006312.

  • Hamilton, J., P. Webb, A. Lewis, J. Hopkins, S. Smith, and P. Davy, 2004: Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmospheric Chemistry and Physics, 4, 1279–1290.

    Article  Google Scholar 

  • Haywood, J. M., and V. Ramaswamy, 1998: Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res., 103, 6043–6058.

    Article  Google Scholar 

  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79(5), 831–844.

    Article  Google Scholar 

  • Hitzenberger, R., and H. Puxbaum, 1993: Comparisons of the measured and calculated specific absorption coefficient for Vienna urban aerosol samples. Aerosol Science and Technology, 18, 323–245.

    Article  Google Scholar 

  • Huang, Y., W. L. Chameides, and R. E. Dickinson, 2007: Direct and indirect effects of anthropogenic aerosols on regional precipition over East Asia. J. Geophys. Res., 112(D03212), doi: 10.1029/2006JD007114.

  • IPCC(AR4), 2007: The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Chapter 2, 153–171.

  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106(D2), 1551–1568.

    Article  Google Scholar 

  • Jacobson, M. Z., 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 107(D19), 4410, doi: 10.1029/2001JD001376.

    Article  Google Scholar 

  • Ma, J.-H., H. Zhang, and Y.-F. Zheng, 2007a: The analysis of global distribution of optical depth due to dust aerosol. Climatic and Environmental Research, 12(2), 156–164. (in Chinese)

    Google Scholar 

  • Ma, J.-H., Y.-F. Zheng, and H. Zhang, 2007b: The analysis of global distribution of optical depth due to black carbon aerosol. Scientia Meteorologica Sinica, 27(5), 549–556. (in Chinese)

    Google Scholar 

  • Menon, S., J. Hansen, L. Nazarenko, and Y. F. Luo, 2002: Climate effects of Black Carbon Aerosols in China and India. Science, 297, 2250–2253.

    Article  Google Scholar 

  • Murphy, D. M., 2005: Something in the air. Science, 307, 1888–1890.

    Article  Google Scholar 

  • Nakajima, T., and Coauthors, 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869–4878.

    Article  Google Scholar 

  • Novakov, T., D. A. Hegg, and P. V. Hobbs, 1997: Airborne measurements of carbonaceous aerosols on the East coast of the United States. J. Geophys. Res., 102(D25), 30023–30030.

    Article  Google Scholar 

  • Raes, F., T. Bates, F. McGovern, and M. Liedekerke, 2000: The second Aerosol Characterization Experiment (ACE-2): General overview and main results. Tellus(B), 52, 111–125.

    Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001a: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.

    Article  Google Scholar 

  • Ramanathan, V., and Coauthors, 2001b: An integrated assessment of the climate forcing and effects of great Indo-Asian haze. J. Geophys. Res., 106(D22), 28, 371–399.

    Article  Google Scholar 

  • Rasch, P. J., N. W. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res., 102, 28127–28138.

    Article  Google Scholar 

  • Reid, J. S., P. V. Hobbs, C. Liousse, J. V. Martins, R. E. Weiss, and T. F. Eck, 1998: Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil. J. Geophys. Res., 103(D24), 32031–32040.

    Article  Google Scholar 

  • Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res., 109(D16202), doi: 10.1029/2004JD004676.

  • Russell, P. B., and Coauthors, 1999: Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer. J. Geophys. Res., 104, 2289–2307.

    Article  Google Scholar 

  • Schnaiter, M., H. Horvath, O. Mohler, K. H. Nauman, H. Saathoff, and O. W. Schock, 2003: UVVIS-NIR spectral optical properties of soot and soot-containing aerosols. Journal of Aerosol Science, 34(10), 1421–1444.

    Article  Google Scholar 

  • Schult, I., J. Feichter, and W. F. Cooke, 1997: Effect of black carbon and sulfate aerosols on the Global Radiation Budget. J. Geophys. Res., 102(D25), 30107–30117.

    Article  Google Scholar 

  • Schumacher, C., and R. A. Houze, 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 2235–2255.

    Article  Google Scholar 

  • Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of clouds. J. Atmos. Sci., 46, 1419–1427.

    Article  Google Scholar 

  • Takemura, T., and T. Nakajima, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Climate, 15(4), 333–352.

    Article  Google Scholar 

  • Wang, C., 2004: A modeling study on the climate impact of black carbon aerosols. J. Geophys. Res., 109(D03106), doi: 10.1029/2003JD004084.

  • Wu, J., and C. B. Fu, 2005: Simulation study of distribution transportation and radiative effects of black carbon aerosol in recent five springs. Chinese J. Atmos. Sci., 29(1), 111–119. (in Chinese)

    Google Scholar 

  • Zhang, H., J. H. Ma, and Y. F. Zheng, 2008: The study of global radiative forcing due to black carbon aerosol. Chinese J. Atmos. Sci., 32(5), 1147–1158. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang  (张 华).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, Z., Guo, P. et al. A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci. 26, 57–66 (2009). https://doi.org/10.1007/s00376-009-0057-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-0057-5

Key words

Navigation