Skip to main content
Log in

Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Crop residue quality and quantity have contrasting effects on soil organic matter (SOM) decomposition, but the mechanisms explaining such priming effect (PE) are still elusive. To reveal the role of residue quality and quantity in SOM priming, we applied two rates (5.4–10.8 g kg−1) of 13C-labeled wheat residues (separately: leaves, stems, roots) to soil and incubated for 120 days. To distinguish PE mechanisms, labeled C was traced in CO2 efflux and in microbial biomass and enzyme activities (involved in C, N, and P cycles) were measured during the incubation period. Regardless of residue type, PE intensity declined with increasing C additions. Roots were least mineralized but caused up to 60% higher PE compared to leaves or stems. During intensive residue mineralization (first 2–3 weeks), the low or negative PE resulted from pool substitution. Thereafter (15–60 days), a large decline in microbial biomass along with increased enzyme activity suggested that microbial necromass served as SOM primer. Finally, incorporation of SOM-derived C into remaining microbial biomass corresponded to increased enzyme activity, which is indicative of SOM cometabolism. Both PE and enzyme activities were primarily correlated with residue-metabolizing soil microorganisms. A unifying model demonstrated that PE was a function of residue mineralization, with thresholds for strong PE increase of up to 20% root, 44% stem, and 51% leaf mineralization. Thus, root mineralization has the lowest threshold for a strong PE increase. Our study emphasizes the role of residue-feeding microorganisms as active players in the PE, which are mediated by quality and quantity of crop residue additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269. doi:10.1139/b82-277

    Article  CAS  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Chang Biol 14:2636–2660. doi:10.1111/j.1365-2486.2008.01674.x

    Google Scholar 

  • Berg B, McClaugherty C (2014) Decomposition as a process: some main features. In: Berg B, McClaugherty C (eds) Plant litter — decomposition, humus formation, carbon sequestration, Third Edition Edn. Springer, Heidelberg, New York, Dordrecht, London, pp. 11–34. doi:10.1007/978-3-642-38821-7_2

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307. doi:10.1007/s11104-005-4628-7

    Article  CAS  Google Scholar 

  • Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131. doi:10.1007/s00374-008-0334-y

    Article  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211. doi:10.1016/j.soilbio.2013.08.024

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011a) Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol Biochem 43:778–786. doi:10.1016/j.soilbio.2010.12.011

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011b) Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biol Biochem 43:159–166. doi:10.1016/j.soilbio.2010.09.028

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Khomyakov N, Myachina O, Bogomolova I, Blagodatsky S, Kuzyakov Y (2014) Microbial interactions affect sources of priming induced by cellulose. Soil Biol Biochem 74:39–49. doi:10.1016/j.soilbio.2014.02.017

    Article  CAS  Google Scholar 

  • Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42:1275–1283. doi:10.1016/j.soilbio.2010.04.005

    Article  CAS  Google Scholar 

  • Bromand S, Whalen J, Janzen H (2001) A pulse-labelling method to generate 13C-enriched plant materials. Plant Soil 235:253–257. doi:10.1023/A:1011922103323

    Article  CAS  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. doi:10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob Chang Biol 21:3200–3209. doi:10.1111/gcb.12982

    Article  PubMed  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367. doi:10.1111/gcb.12475

    Article  PubMed  Google Scholar 

  • Chen S, Wang Y, Hu Z, Gao H (2015) CO2 emissions from a forest soil as influenced by amendments of different crop straws: implications for priming effects. Catena 131:56–63. doi:10.1016/j.catena.2015.03.016

    Article  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. doi:10.1111/gcb.12113

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779. doi:10.1038/ngeo2520

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–848. doi:10.1016/S0038-0717(03)00123-8

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi:10.1038/nature06275

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713. doi:10.1016/j.soilbio.2011.04.016

    Article  CAS  Google Scholar 

  • Guenet B, Neill C, Bardoux G, Abbadie L (2010) Is there a linear relationship between priming effect intensity and the amount of organic matter input? Appl Soil Ecol 46:436–442. doi:10.1016/j.apsoil.2010.09.006

    Article  Google Scholar 

  • Hayes JM (2004) An introduction to isotopic calculations. Woods Hole, MA 02543, USA: http://www.whoi.edu/cms/files/jhayes/2005/9/IsoCalcs30Sept04_5183.pdf.

  • Horvath RS (1972) Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev 36:146–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyle FC, Murphy DV, Brookes PC (2008) Microbial response to the addition of glucose in low-fertility soils. Biol Fertil Soils 44:571–579. doi:10.1007/s00374-007-0237-3

    Article  CAS  Google Scholar 

  • Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’ effect. J Soil Sci 36:425–444. doi:10.1111/j.1365-2389.1985.tb00348.x

    Article  CAS  Google Scholar 

  • Jiang-shan Z, Jian-fen G, Guang-shui C, Wei Q (2005) Soil microbial biomass and its controls. J Forest Res 16:327–330. doi:10.1007/BF02858201

    Article  Google Scholar 

  • Johnson JMF, Novak JM, Varvel GE, Stott DE, Osborne SL, Karlen DL, Lamb JA, Baker J, Adler PR (2014) Crop residue mass needed to maintain soil organic carbon levels: can it be determined? BioEnergy Res 7:481–490. doi:10.1007/s12155-013-9402-8

    Article  CAS  Google Scholar 

  • Kramer S, Marhan S, Ruess L, Armbruster W, Butenschoen O, Haslwimmer H, Kuzyakov Y, Pausch J, Scheunemann N, Schoene J, Schmalwasser A (2012) Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia 55:111–119. doi:10.1016/j.pedobi.2011.12.001

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371. doi:10.1016/j.soilbio.2010.04.003

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/S0038-0717(00)00084-5

    Article  CAS  Google Scholar 

  • Ladd JN, Foster R, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi:10.1038/nature16069

    Article  CAS  PubMed  Google Scholar 

  • Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50:147–153. doi:10.1007/s00374-013-0822-6

    Article  CAS  Google Scholar 

  • Lian T, Wang G, Yu Z, Li Y, Liu X, Jin J (2016) Carbon input from 13C-labelled soybean residues in particulate organic carbon fractions in a Mollisol. Biol Fertil Soils 52:331–339. doi:10.1007/s00374-015-1080-6

    Article  CAS  Google Scholar 

  • Makarov MI, Malysheva TI, Menyailo OV, Soudzilovskaia NA, Van Logtestijn RSP, Cornelissen JHC (2015) Effect of K2SO4 concentration on extractability and isotope signature (δ13C and δ15N) of soil C and N fractions. Eur J Soil Sci 66:417–426. doi:10.1111/ejss.12243

    Article  CAS  Google Scholar 

  • Meyer SL (1975) Data analysis for scientists and engineers. Wiley, New York

    Google Scholar 

  • Miltner A, Kindler R, Knicker H, Richnow HH, Kästner M (2009) Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Org Geochem 40:978–985. doi:10.1016/j.orggeochem.2009.06.008

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. doi:10.1007/s10533-011-9658-z

    Article  CAS  Google Scholar 

  • Nannipieri P, Johnson RL, Paul EA (1978) Criteria for measurement of microbial growth and activity in soil. Soil Biol Biochem 10:223–229. doi:10.1016/0038-0717(78)90100-1

    Article  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Obreson A, Frossard E (eds) Phosphorus in action, Soil Biology, vol 26. Springer Verlag, Berlin Heidelberg, pp 215–243 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762. doi:10.1007/s00374-012-0723-0

    Article  Google Scholar 

  • Nguyen TT, Marschner P (2016) Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biol Fertil Soils 52:165–176. doi:10.1007/s00374-015-1063-7

    Article  CAS  Google Scholar 

  • Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol 42:183–190. doi:10.1016/j.apsoil.2009.03.003

    Article  Google Scholar 

  • Paterson E, Sim A (2013) Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol 19:1562–1571. doi:10.1111/gcb.12140

    Article  PubMed  Google Scholar 

  • Poirier V, Angers D, Rochette P, Whalen J (2013) Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil. Biol Fertil Soils 49:527–535. doi:10.1007/s00374-013-0794-6

    Article  CAS  Google Scholar 

  • Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Meth 58:233–241. doi:10.1016/j.mimet.2004.04.001

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Sanaullah M, Razavi BS, Blagodatskaya E, Kuzyakov Y (2016) Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol Fertil Soils 52:505–514. doi:10.1007/s00374-016-1094-8

    Article  CAS  Google Scholar 

  • Schnecker J, Wild B, Hofhansl F, Alves RJ, Bárta J, Čapek P, Fuchslueger L, Gentsch N, Gittel A, Guggenberger G, Hofer A (2014) Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils. PLoS One 9:e94076. doi:10.1371/journal.pone.0094076

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahbaz M, Kuzyakov Y, Heitkamp F (2016a) Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma. doi:10.1016/j.geoderma.2016.05.019

    Google Scholar 

  • Shahbaz M, Kuzyakov Y, Maqsood S, Wendland M, Heitkamp F (2016b) Decadal nitrogen fertilization decreases mineral-associated and subsoil carbon: a 32 year study. Land Degrad Develop. doi:10.1002/ldr.2667

    Google Scholar 

  • Stewart CE, Moturi P, Follett RF, Halvorson AD (2015) Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry 124:335–351. doi:10.1007/s10533-015-0101-8

    Article  CAS  Google Scholar 

  • Tian J, Pausch J, Yu G, Blagodatskaya E, Gao Y, Kuzyakov Y (2015) Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect. Appl Soil Ecol 90:1–10. doi:10.1016/j.apsoil.2015.01.014

    Article  Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Wagner GH (1968) Significance of microbial tissue to soil organic matter. In: Isotopes and radiation in soil organic matter studies. FAO/IAEA, Technical meeting, Vienna, pp 197–205

  • Wang H, Boutton T, Xu W, Hu G, Jiang P, Bai E (2015) Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Sci Rep 5:10102. doi:10.1038/srep10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Dokohely ME, Xiong Z, Kuzyakov Y (2016) Contrasting effects of aged and fresh biochars on glucose-induced priming and microbial activities in paddy soil. J Soils Sediments 16:191–203. doi:10.1007/s11368-015-1189-0

    Article  CAS  Google Scholar 

  • Webster R (2007) Analysis of variance, inference, multiple comparisons and sampling effects in soil research. Eur J Soil Sci 58:74–82. doi:10.1111/j.1365-2389.2006.00801.x

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169. doi:10.1016/0038-0717(90)90046-3

    Article  CAS  Google Scholar 

  • Xiao C, Guenet B, Zhou Y, Su J, Janssens IA (2015) Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos 124:649–657. doi:10.1111/oik.01728

    Article  CAS  Google Scholar 

  • Xu X, Ouyang H, Richter A, Wanek W, Cao G, Kuzyakov Y (2011) Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. J Ecol 99:563–571. doi:10.1111/j.1365-2745.2010.01789.x

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by the German Academic Exchange Service (DAAD) to MS and Alexander von Humboldt Foundation (AvH) to MSU. EB’s participation was supported by the Russian Science Foundation (project N 14-14-00625). We also acknowledge the technical support of Klaus Schützenmeister in isotope labeling of the plant material. We are thankful to Karin Schmidt and Anita Kriegel for laboratory assistance. The isotopic analyses were performed at the Kompetenzzentrum Stabile Isotope (KOSI), Goettingen. This study was funded by the Deutsche Forschungsgemeinschaft (DFG, projects HE 6726/6 and KU 1184/29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahbaz.

Electronic supplementary material

Fig. S1

(DOCX 44.2 kb)

Fig. S2

(DOCX 49.8 kb)

Table S1

(DOCX 13.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbaz, M., Kuzyakov, Y., Sanaullah, M. et al. Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol Fertil Soils 53, 287–301 (2017). https://doi.org/10.1007/s00374-016-1174-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1174-9

Keywords

Navigation