Skip to main content

Advertisement

Log in

Effect of organic and mineral N fertilizers on N2O emissions from an intensive vegetable rotation

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

An Erratum to this article was published on 11 June 2016

Abstract

Predicting and accounting for the nitrogen (N) supplied by organic amendments can reduce the application of mineral N fertilizer without yield penalty as well as decreasing N2O emissions. Automated chambers were employed over 12 months to measure N2O emissions together with soil mineral N and crop yields from optimized organic and conventional N management in an intensive, irrigated vegetable rotation in subtropical Australia. Five different fertilizer strategies were investigated. The conventional urea application rate (CONV) was compared to raw (Ma) and composted (Co) chicken manure at a conventional (Ma + CONV, Co + CONV) and reduced urea rate (Ma + Rd, Co + Rd). The reduced rates represented an 18–20 % less urea being applied and were calculated by accounting for the potential N mineralized from organic amendments. Three consecutive crops (green beans, broccoli, and lettuce) plus a cover crop (sorghum) showed no significant differences in yield and biomass production between treatments receiving either organic or mineral fertilizer. Overall, fertilizer-induced emissions were low and were unaffected by compost addition. Raw organic amendments increased N2O emissions with the first crop in the rotation contributing the highest emissions, 38–57 % of the annual cumulative N2O. The incorporation of post-harvest crop residues was a substantial trigger for N2O emissions, while the application of N fertilizer and heavy rainfall events had only marginal effects. Highest cumulative N2O emissions of 1748 g N2O-N ha−1 yr−1 were measured in the Ma + Rd treatment, with the compost treatments reducing N2O emissions by up to 45 % with emissions similar to the zero N application (0N). This study demonstrated that the strategic application of composted organic amendments integrated with reducing N fertilizer rates by up to 20 % can be an effective pathway to reduce greenhouse gas (GHG) emissions without compromising crop growth and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Australian Bureau of Statistic (2006) Water use on Australian farms, 2005–06

    Google Scholar 

  • Baggs EM, Rees RM, Castle K, Scott A, Smith KA, Vinten AJA (2002) Nitrous oxide release from soils receiving N-rich crop residues and paper mill sludge in eastern Scotland. Agric Ecosyst Environ 90:109–123, doi:10.1016/S0167-8809(01)00175-X

  • Begum N, Guppy C, Herridge D, Schwenke G (2013) Influence of source and quality of plant residues on emissions of N2O and CO2 from a fertile, acidic. Black Vertisol. Biol Fertil Soils 50:499–506. doi:10.1007/s00374-013-0865-8

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300. doi:10.2307/2346101

    Google Scholar 

  • Bernai M, Paredes C, Sanchez-Monedero M, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99

    Article  Google Scholar 

  • Blagodatskaya Е, Zheng X, Blagodatsky S, Wiegl R, Dannenmann M, Butterbach-Bahl K (2014) Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biol Fertil Soils 50:775–783. doi:10.1007/s00374-014-0899-6

    Article  CAS  Google Scholar 

  • Box GEP, Pierce DA (1970) Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J Am Stat Assoc 65:1509–1526. doi:10.1080/01621459.1970.10481180

    Article  Google Scholar 

  • Ceotto E (2005) The issues of energy and carbon cycle: new perspectives for assessing the environmental impact of animal waste utilization. Bioresour Technol 96:191–196, doi:10.1016/j.biortech.2004.05.007

  • Cheng Y, Zhang J-B, Müller C, Wang S-Q (2015) 15N tracing study to understand the N supply associated with organic amendments in a vineyard soil. Biol Fertil Soils 51:983–993. doi:10.1007/s00374-015-1044-x

    Article  CAS  Google Scholar 

  • Commonwealth of Australia (2014) National Inventory Report 2012, vol 1

    Google Scholar 

  • Dalal RC, Gibson I, Allen DE, Menzies NW (2010) Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agric Ecosyst Environ 136:273–281, doi:10.1016/j.agee.2009.06.010

  • Diao T, Xie L, Guo L, Yan H, Lin M, Zhang H, Lin J, Lin E (2013) Measurements of N2O emissions from different vegetable fields on the north China. Plain Atmos Environ 72:70–76, doi:10.1016/j.atmosenv.2013.02.040

  • Eghball B, Wienhold BJ, Gilley JE, Eigenberg RA (2002) Mineralization of manure nutrients. J Soil Water Conserv 57:470–473

    Google Scholar 

  • FAO (1998) World reference base for soil resources. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Hartz TK, Mitchell JP, Giannini C (2000) Nitrogen and carbon mineralization dynamics of manures and composts. HortSci 35:209–212

    Google Scholar 

  • Hernández T, Chocano C, Moreno J-L, García C (2014) Towards a more sustainable fertilization: combined use of compost and inorganic fertilization for tomato cultivation. Agric Ecosyst Environ 196:178–184, doi:10.1016/j.agee.2014.07.006

  • IPCC ES, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., LeRoy, H. M. Jr., Chen, Z. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change—technical summary 2.1. Cambridge University Press, Cambridge

  • Kroeze C, Mosier A, Nevison C, Oenema O, Seitzinger S, van Cleemput O, Conrad R, Mitra A, HU N, Sass R (1997) Revised 1996 IPCC guidelines for national greenhouse gas inventories. IPCC/OECD/IEA vol 2. Paris

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371, doi:10.1016/j.soilbio.2010.04.003

  • Mummey DL, Smith JL, Bluhm G (1998) Assessment of alternative soil management practices on N2O emissions from US agriculture. Agric Ecosyst Environ 70:79–87, doi:10.1016/S0167-8809(98)00117-0

  • Pelster DE, Chantigny MH, Rochette P, Angers DA, Rieux C, Vanasse A (2012) Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types. J Environ Qual 41:427–435. doi:10.2134/jeq2011.0261

    Article  CAS  PubMed  Google Scholar 

  • Pfab H, Palmer I, Buegger F, Fiedler S, Müller T, Ruser R (2011) N2O fluxes from a Haplic Luvisol under intensive production of lettuce and cauliflower as affected by different N-fertilization strategies. J Plant Nutr Soil Sci 174:545–553. doi:10.1002/jpln.201000123

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Rezaei Rashti M, Wang W, Moody P, Chen C, Ghadiri H (2015) Fertiliser-induced nitrous oxide emissions from vegetable production in the world and the regulating factors: a review. Atmos Environ 112:225–233, doi:10.1016/j.atmosenv.2015.04.036

  • Robertson GP, Groffman PM (2007) In: Paul EA (ed) Soil microbiology, biochemistry, and ecology. Springer, New York, New York, USA, pp 341–364

    Chapter  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, Bertrand N, Côté D (2004) Carbon dioxide and nitrous oxide emissions following fall and spring applications of pig slurry to an agricultural soil. Soil Sci Soc Am J 68:1410–1420. doi:10.2136/sssaj2004.1410

    Article  CAS  Google Scholar 

  • Rowlings DW, Grace PR, Scheer C, Liu S (2015) Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture. Sci Total Environ 512–513:8–18, doi:10.1016/j.scitotenv.2015.01.011

  • Scheer C, Grace P, Rowlings D, Payero J (2013) Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management. Nutr Cycl Agroecosyst 95:43–56. doi:10.1007/s10705-012-9547-4

    Article  CAS  Google Scholar 

  • Scheer C, Rowlings DW, Firrel M, Deuter P, Morris S, Grace PR (2014) Impact of nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive broccoli production system in sub-tropical Australia. Soil Biol Biochem 77:243–251, doi:10.1016/j.soilbio.2014.07.006

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111:9199–9204. doi:10.1073/pnas.1322434111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York

  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465:72–96, doi:10.1016/j.scitotenv.2013.01.031

  • VanderZaag AC, Jayasundara S, Wagner-Riddle C (2011) Strategies to mitigate nitrous oxide emissions from land applied manure. Anim Feed Sci Technol 166–167:464–479, doi:10.1016/j.anifeedsci.2011.04.034

  • Zhu-Barker X, Doane TA, Horwath WR (2015) Role of green waste compost in the production of N2O from agricultural soils. Soil Biol Biochem 83:57–65, doi:10.1016/j.soilbio.2015.01.008

Download references

Acknowledgments

This project was funded through the Department of Agriculture’s Carbon Farming Future (Project code 1194448–211) with assistance from Australian Egg Corporation, Australian Pork Limited, and Dairy Australia. Some of the data reported in this paper were obtained at the Central Analytical Research Facility operated by the Institute for Future Environments (QUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Rowlings.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosa, D., Rowlings, D.W., Biala, J. et al. Effect of organic and mineral N fertilizers on N2O emissions from an intensive vegetable rotation. Biol Fertil Soils 52, 895–908 (2016). https://doi.org/10.1007/s00374-016-1117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1117-5

Keywords

Navigation