Skip to main content

Advertisement

Log in

Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Bacterial alkaline phosphomonoesterases (APases) are relevant for organic phosphorus (Po) recycling in many soils. However, the abundance and diversity of bacterial APase in the rhizospheres of native plants are poorly known, particularly in extreme environments. In this research work, we studied the composition of total and APase-harboring bacterial communities, abundances of selected APase genes (phoD and phoX), and APase activities in rhizosphere soils from native plants grown in extreme environments of northern (Atacama Desert), central (Andes volcano; Quetrupillan and Mamuil Malal) and hot spring (Liquiñe), and southern polar (Patagonia and Antarctic) regions of Chile. Differences in the composition of bacterial communities in the rhizosphere soils were revealed by denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) of 16S ribosomal RNA (rRNA), phoD, and phoX genes. In general, the significant lowest bacterial diversities, APase gene abundances, and APase activities were observed in rhizosphere soils from Atacama Desert, whereas the highest values were observed in rhizosphere soils of Patagonia. In addition, APase gene abundances were positively correlated among them and with APase activity of rhizosphere soils, but negatively correlated with phosphorus (P) availability in rhizosphere soils. Although bacterial APases were observed in all studied rhizosphere soils, their relevance to soil Po recycling in soils of extreme environments remains unclear and further studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azua-Bustos A, Caro-Lara L, Vicuña R (2015) Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ Microbiol Rep 7:388–394

    Article  PubMed  Google Scholar 

  • Barillot CD, Sarde CO, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476

    Article  CAS  Google Scholar 

  • Bertsch PM, Bloom PR (1996) Aluminum. In: Bigham JM (ed) Methods of soil analysis, part 3—chemical methods. Soil Science Society of America, Madison, pp 526–527

    Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke J, O’Gara F, Dowling DN (2013) Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol Fertil Soils 49:31–39

    Article  CAS  Google Scholar 

  • Ciccazzo S, Esposito A, Rolli A, Zerbe S, Daffonchio D, Brusetti L (2014) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springerplus 3:391

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28. doi:10.1186/2049-2618-1-28

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai J, Chen D, Gao G, Tang X, Wu S, Wu X, Zhou J (2014) Recovery of novel alkaline phosphatase-encoding genes (phoX) from eutrophic Lake Taihu. Can J Microbiol 60:167–171

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Chen D, Wu S, Wu X, Gao G, Zhou J, Tang X, Shao K, Gao G (2015) Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu. Can J Microbiol 61:227–36

    Article  CAS  PubMed  Google Scholar 

  • DiRuggiero J, Wierzchos J, Robinson CK, Souterre T, Ravel J, Artieda O, Souza-Egipsy V, Ascaso C (2013) Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10:2439–2450

    Article  Google Scholar 

  • Edwards IP, Bürgmann H, Miniaci C, Zeyer J (2006) Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L.) Heywood and adjacent bare soil along an alpine chronosequence. Microb Ecol 52:679–692

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher LE, Conley CA, Valdivia-Silva JE, Perez-Montaño S, Condori-Apaza R, Kovacs GT, Glavin DP, McKay CP (2011) Determination of low bacterial concentrations in hyperarid Atacama soils: comparison of biochemical and microscopy methods with real-time quantitative PCR. Can J Microbiol 57:953–963

    Article  CAS  PubMed  Google Scholar 

  • Fraser T, Lynch DH, Entz MH, Dunfield KE (2015a) Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 257–258:115–122

    Article  Google Scholar 

  • Fraser T, Lynch DH, Bent E, Entz MH, Dunfiel KE (2015b) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem 88:137–147

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Podle PS, Collins MD, Hutson RA, Naresh KG (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Haegeman B, Sen B, Godon JJ, Hamelin J (2014) Only Simpson diversity can be estimated accurately from microbial community fingerprints. Microb Ecol 68:169–172

    Article  PubMed  Google Scholar 

  • Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  PubMed  Google Scholar 

  • Hebrien SA, Neal JL (1990) Soil pН and phosphatase activity. Commun Soil Sci Plant Anal 21:439–456

    Article  Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, Mora ML, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Jorquera MA, Martínez OA, Marileo LG, Acuña JJ, Saggar S, Mora ML (2013) Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microbiol Biotechnol 30:99–10

    Article  PubMed  Google Scholar 

  • Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153

    Article  Google Scholar 

  • Kathuria S, Martiny AC (2011) Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol 13:74–83

    Article  CAS  PubMed  Google Scholar 

  • Luo HW, Bennera R, Long RA, Hu JJ (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci U S A 106:21219–21223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier RM, Drees KP, Neilson JW, Hernderson DA, Quade J, Betancourt JL, Navarro-Gonzales R, Rainey FA, McKay (2004) Microbial life in the Atacama Desert. Science 306:1289–1290

    Article  CAS  PubMed  Google Scholar 

  • Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44:93–101

    Article  CAS  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    Article  CAS  Google Scholar 

  • Massaccesi L, Benucci GMN, Gigliotti G, Cocco S, Corti G, Agnelli A (2015) Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif, central Italy). Soil Biol Biochem 89:184–195

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mullen MD (2005) Phosphorus in soils: biological interactions. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment, vol 3. Elsevier Ltd, Oxford, pp 210–215

    Chapter  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Oberson A, Frossard‬ E (eds) Phosphorus in action, soil biology, vol 26. Springer, Berlin, pp 215–243

    Chapter  Google Scholar 

  • Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566

    Article  PubMed  Google Scholar 

  • Palacios O, Bashan Y, de-Bashan L (2014) Proven and potential involvement of vitaminsin interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415–432

    Article  CAS  Google Scholar 

  • Pathan S, Ceccherini M, Pietramellara G, Puschenreiter M, Giagnoni L, Arenella M, Varanini Z, Nannpieri P, Renella G (2015) Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 387:413–424

    Article  CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano N, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Radojević M, Bashkin VN (1999) Practical environmental analysis, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Ragot SA, Kerteszb MA, Bünemanna EK (2015) phoD alkaline phosphatase gene diversity in soil. Appl Environ Microbiol 81:7281–7289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nutr 54:62–71

    Article  CAS  Google Scholar 

  • Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3:563–572

    Article  CAS  PubMed  Google Scholar 

  • Sebastian M, Ammerman JW (2011) Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium Ruegeria pomeroyi DSS-3. Environ Microbiol Rep 3:535–542

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Inglett PW, Reddy KR, Ogram AV (2005) Microscopic examination of photoautotrophic and phosphatase-producing organisms in phosphorus-limited Everglades periphyton mats. Limnol Oceanogr 50:2057–2062

    Article  Google Scholar 

  • Stegen JC, Enquist BJ, Ferrière R (2009) Advancing the metabolic theory of diversity. Ecol Lett 12:1001–1015

    Article  PubMed  Google Scholar 

  • Stevenson FJ (1986) Cycles of soil, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol 70:5868–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soils 49:661–672

    Article  CAS  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968. doi:10.1371/journal.pone.0017968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner B (2010) Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl Environ Microbiol 76:6485–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vítek P, Edwards J, Jehlicka C, Ascaso A, De Los RS, Valea S, Jorge-Villar E, Davila AF, Wierzchos J (2010) Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Phil Trans R Soc A 368:3205–3221

    Article  PubMed  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Wang Y, Zhang F, Marschner P (2012) Soil pH is the main factor influencing growth and rhizosphere properties of wheat following different pre-crops. Plant Soil 360:271–286

    Article  CAS  Google Scholar 

  • Warncke D, Brown JR (1998) Potassium and other basic cations. In: Brown JR (Ed) Recommended chemical soil test procedures for the North Central Region. NCR Publication No. 221. Missouri Agricultural Experiment Station, Columbia, MO pp 31–33

  • Yang Y, Dungan RS, Ibekwe AM, Valenzuela-Solano C, Crohn DM, Crowley DE (2003) Effect of organic mulches on soil bacterial communities one year after application. Biol Fertil Soils 38:273–281

    Article  CAS  Google Scholar 

  • Zappa B, Rolland J, Flament D, Gueguen Y, Boudrant J, Dietrich J (2001) Characterization of a highly thermostable alkaline phosphatase from the Euryarchaeon Pyrococcus abyssi. Appl Environ Microbiol 67:4504–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financed by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), FONDECYT Postdoctoral Project No. 3140620, FONDECYT Regular Project No. 1120505, and International Cooperation Project Chile-USA code USA2013-0010 from the Chilean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacquelinne J. Acuña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 53741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña, J.J., Durán, P., Lagos, L.M. et al. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biol Fertil Soils 52, 763–773 (2016). https://doi.org/10.1007/s00374-016-1113-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1113-9

Keywords

Navigation