Skip to main content

Advertisement

Log in

Fertilization practices alter microbial nutrient limitations after alleviation of carbon limitation in a Ferric Acrisol

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Microbial nutrient limitation was investigated in a 53-year-old field experiment in the Central-West of Burkina Faso under sorghum–cowpea rotation, comparing three fertilization practices: mineral fertilizer (MIN), mineral fertilizer and farmyard manure (MINFYM), and a non-fertilized control (CON). We assessed microbial N and P limitation after removal of C limitation by (i) determining microbial N and P, (ii) assessing respiration kinetics in incubated soil samples amended with easily available C (glucose) alone or in combination with N and/or P, or not amended, and (iii) evaluating changes in microbial biomass and community composition at the peak of microbial respiration by microbial P and phospholipid fatty acid (PLFA) analyses. Microbial N and P were very low in all fertilization practices, but greater in MINFYM than in CON. Easily available C was the first factor limiting microorganisms in all fertilization practices. After removal of C limitation, most indicators suggested N and P co-limitation in CON. In contrast, respiration kinetics in MINFYM and MIN were only N-limited, while biomass formation in MINFYM was also P-limited. PLFA analyses indicated preferential fungal growth on the added C, and P limitation of changes in microbial community composition in MIN. Long-term application of fertilizers mostly alleviated secondary microbial nutrient limitation by P but not by N, and C always remained the primary limiting factor for microbial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10:215–221

    Article  CAS  Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods. CAB International, Wallingford

    Google Scholar 

  • Bationo A, Buerkert A (2001) Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutr Cycl Agroecosyst 61:131–142

    Article  Google Scholar 

  • Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2007) Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric Syst 64:13–25

    Article  Google Scholar 

  • Berthrong ST, Buckley DH, Drinkwater LE (2013) Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microb Ecol 66:158–170

    Article  CAS  PubMed  Google Scholar 

  • Bowman RA, Moir JO (1993) Basic EDTA as an extractant for soil organic phosphorus. Soil Sci Soc Am J 57:1516–1518

    Article  CAS  Google Scholar 

  • BĂĽnemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus—a review. Soil Biol Biochem 89:82–98

    Article  Google Scholar 

  • BĂĽnemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  Google Scholar 

  • BĂĽnemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, McNeill AM (2008) Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem 40:1908–1915

    Article  Google Scholar 

  • Chakraborty A, Chakrabarti K, Chakraborty A, Ghosh S (2011) Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol Fertil Soils 47:227–233

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–691

    Article  CAS  Google Scholar 

  • CompaorĂ© E, Frossard E, Sinaj S, Fardeau JC, Morel J-L (2003) Influence of land-use management on isotopically exchangeable phosphate in soils from Burkina Faso. Commun Soil Sci Plant Anal 34:201–223

    Article  Google Scholar 

  • Demoling F, Figueroa D, BĂĄĂĄth E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495

    Article  CAS  Google Scholar 

  • Ehlers K, Bakken LR, FrostegĂĄrd Ă…, Frossard E, BĂĽnemann EK (2010) Phosphorus limitation in a Ferralsol: Impact on microbial activity and cell-internal P pools. Soil Biol Biochem 42:558–566

    Article  CAS  Google Scholar 

  • Esberg C, du Toit B, Olsson R, Ilstedt U, Giesler R (2010) Microbial responses to P addition in six South African forest soils. Plant Soil 329:209–225

    Article  CAS  Google Scholar 

  • FAO (2006) World reference base for soil resources. A framework for international classification, correlation and communication. FAO, Rome

    Google Scholar 

  • FrostegĂĄrd Ă…, BĂĄĂĄth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • FrostegĂĄrd Ă…, Tunlid A, BĂĄĂĄth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163

    Article  Google Scholar 

  • FrostegĂĄrd A, Tunlid A, BĂĄĂĄth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  Google Scholar 

  • Gnankambary Z, Stedt U, Nyberg G, Hien V, Malmer A (2008) Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso: the effects of tree canopy and fertilization. Soil Biol Biochem 40:350–359

    Article  CAS  Google Scholar 

  • Göransson H, Venterink HO, BĂĄĂĄth E (2011) Soil bacterial growth and nutrient limitation along a chronosequence from a glacier forefield. Soil Biol Biochem 43:1333–1340

    Article  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser EA, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116:191–195

    Article  Google Scholar 

  • Hien E (2004) Dynamique du carbone dans un Acrisol ferrique du Centre Ouest Burkina: Influence des pratiques culturales sur le stock et la qualitĂ© de la matière organique. Thèse de doctorat. Ecole Nationale SupĂ©rieure Agronomique de Montpellier, France

    Google Scholar 

  • Ilstedt U, Singh S (2005) Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol Biochem 37:1407–1410

    Article  CAS  Google Scholar 

  • Kaiser C, Frank A, Wild B, Koranda M, Richter A (2010) Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18:2ω6,9 and 18:1ω9. Soil Biol Biochem 42:1650–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamaa M, Mburu H, Blanchart E, Chibole L, Chotte JL, Kibunja C, Lesueur D (2011) Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya. Biol Fertil Soils 47:315–321

    Article  Google Scholar 

  • Kamble PN, BĂĄĂĄth E (2014) Induced N-limitation of bacterial growth in soil: effect of carbon loading and N status in soil. Soil Biol Biochem 74:11–20

    Article  CAS  Google Scholar 

  • Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biol Biochem 27:1353–1357

    Article  CAS  Google Scholar 

  • Lesschen JP, Stoorvogel JJ, Smaling EMA, Heuvelink GBM, Veldkamp A (2007) A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr Cycl Agroecosyst 78:111–131

    Article  Google Scholar 

  • Lompo F (2009) Effets induits des modes de gestion de la fertilitĂ© sur les Ă©tats du phosphore et la solubilisation des phosphates naturels dans deux sols acides du Burkina Faso. Thèse doctorat d’Etat. UniversitĂ© de Cocody, CĂ´te d'Ivoire

    Google Scholar 

  • Mando A, Bonzi M, Wopereis MCS, Lompo F, Stroosnijder L (2005) Long-term effects of mineral and organic fertilization on soil organic matter fractions and sorghum yield under Sudano-Sahelian conditions. Soil Use Manag 21:396–401

    Article  Google Scholar 

  • McNeill AM, Unkovich MJ (2007) The nitrogen cycle in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, pp 37–64

    Chapter  Google Scholar 

  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2013) Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100 % of the water-filled pore space. Biol Fertil Soils 49:13–21

    Article  CAS  Google Scholar 

  • Nordgren A, BĂĄĂĄth E, Söderström B (1988) Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate. Soil Biol Biochem 20:949–954

    Article  CAS  Google Scholar 

  • Ohno R, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895

    Article  CAS  Google Scholar 

  • Pallo JF, Sawadogo N, Zombre NP, Sedogo MP (2009) Statut de la matière organique des sols de la zone nord-soudanienne au Burkina Faso. Biotechnol Agron Soc Environ 13:139–142

    CAS  Google Scholar 

  • Pieri C (1989) FertilitĂ© des terres de savanes. Bilan de trente ans de recherche et de dĂ©veloppement agricoles au sud du Sahara. Ministère de la coopĂ©ration et du DĂ©veloppement, et CIRAD-IRAT

  • Roose E, Barthès B (2001) Organic matter management for soil conservation and productivity restoration in Africa: a contribution from Francophone research. Nutr Cycl Agroecosyst 61:159–170

    Article  Google Scholar 

  • Scheu S (1993) Analysis of the microbial nutrient status in soil micro compartments: earthworm faeces from a basalt-limestone gradient. Geoderma 56:575–586

    Article  CAS  Google Scholar 

  • Sedogo MP (1993) Evolution des sols ferrugineux lessivĂ©s sous culture: incidence des modes de gestion sur la fertilitĂ©. Thèse doctorat d'Etat, FacultĂ© des sciences et techniques, UniversitĂ© Nationale de CĂ´te d'Ivoire

  • Smaling EMA, Nandwa SM, Janssen BH (1997) Soil fertility in Africa is at stake. In: Buresh RJ, Sanchez PA, Calhoun F (eds) Replenishing soil fertility in Africa. SSSA/ASA, Madison, pp 47–61

    Google Scholar 

  • Stotzky G, Norman AG (1961) Factors limiting microbial activitiy in soil. 1. Levels of substrate, nitrogen and phosphorus. Arch Mikrobiol 40:341–369

    Article  CAS  PubMed  Google Scholar 

  • Teklay T, Nordgren A, Malmer A (2006) Soil respiration characteristics of tropical soils from agricultural and forestry land-uses at Wondo Genet (Ethiopia) in response to C, N and P amendments. Soil Biol Biochem 38:125–133

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Whalen JK (2014) Managing soil biota-mediated decomposition and nutrient mineralization in sustainable agroecosystems. Adv Agric 2014:1–13

    Article  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2010) The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326:511–522

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the funding of the Swiss Government (Federal Commission for Scholarships for foreign students, FCS), and the Bureau de la Cooperation Suisse au Burkina Faso. We thank Papaoba Michel Sedogo, head of the Laboratoire Sol-Eau-Plantes of INERA, for scientific advice. We are grateful to the manager of the field trial of Saria, Martin Sanon, for his help during soil sampling, and to all technicians of the Group of Plant Nutrition (ETH Zurich), Agroscope Reckenholz, and FiBL who helped during laboratory analyses. We also thank Knut Ehlers and Zacharia Gnankambary for their assistance during the pilot study.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. BĂĽnemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traoré, O.Y.A., Kiba, D.I., Arnold, M.C. et al. Fertilization practices alter microbial nutrient limitations after alleviation of carbon limitation in a Ferric Acrisol. Biol Fertil Soils 52, 177–189 (2016). https://doi.org/10.1007/s00374-015-1061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1061-9

Keywords

Navigation