Skip to main content

Advertisement

Log in

Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The process-level understanding of biochar-C decomposition and microbial utilization in soils is poorly understood as well as how these dynamics vary across different addition rates and soil types. We present results from a 30-month laboratory incubation, where oak-derived biochar was added at 0, 1, 5, 10, and 20 % rate by weight to four soils varying in soil properties. We determined biochar-C loss using natural abundance 13C isotope coupled to measurements of CO2 efflux. We measured microbial abundance, composition, and C use efficiency (CUE) using phospholipid fatty acid biomarkers and 13C labeled glucose, respectively. After 30 months, the amount of the remaining biochar-C was insignificantly different between different biochar addition rates, suggesting that biochar-C loss is proportional to biochar addition rates. In soils with higher C contents (i.e., >1.5 %), biochar decomposition rates appeared to slow down after initial fast decomposition; while biochar decomposition rates followed one-pool model for soils with lower C. Soil microbial composition significantly changed at 10 or 20 % addition rate after 30 months, which was correlated with the increase in soil C/N. The highest CUE was found at 1 or 5 %, depending on soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ameloot N, Graber ER, Verheijen FGA, Deneve S (2013) Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci 64:379–390

    Article  CAS  Google Scholar 

  • Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Balesdent J, Balbane M (1992) Maize root-derived soil organic carbon estimated by natural 13C abundance. Soil Biol Biochem 24:97–101

    Article  Google Scholar 

  • Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S (2014) Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils 50:1189–1200

    Article  CAS  Google Scholar 

  • Bird JA, Herman DJ, Firestone MK (2011) Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biol Biochem 43:718–725

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. Eur J Soil Sci 60:186–197

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patters. Microb Ecol 35:265–278

    Article  PubMed  CAS  Google Scholar 

  • Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C, Wilkinson SG (eds) Microbial Lipids. Academic, London, pp 203–298

    Google Scholar 

  • Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenerg 35:1182–1189

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten I, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green waste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Colman EA (1947) A laboratory procedure for determining the field capacity of soils. Soil Sci 63:277–283

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  PubMed  Google Scholar 

  • Dempster DN, Gleeson DP, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Muller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    Article  CAS  Google Scholar 

  • Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162

    Article  CAS  Google Scholar 

  • Domene X, Hanley K, Enders A, Lehmann J (2015) Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. Appl Soil Ecol 89:10–17

    Article  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Farrell M, Kuhn TK, Macdonald LM, Maddern TM, Murphy DV, Hall PA, Singh BP, Baumann K, Krull ES, Baldock JA (2013) Microbial utilization of biochar-derived carbon. Sci Total Environ 465:288–297

    Article  PubMed  CAS  Google Scholar 

  • Farrell M, Macdonald LM, Butler G, Chirino-Valle I, Condron LM (2014) Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol Fertil Soils 50:169–178

    Article  CAS  Google Scholar 

  • Frey SD, Elliott ET, Paustian K (1999) Application of the hexokinase-glucose-6-phosphate dehydrogenase enzymatic assay for measurement of glucose in amended soil. Soil Biol Biochem 31:933–935

    Article  CAS  Google Scholar 

  • Frey SD, Gupta VVSR, Elliott ET, Paustian K (2001) Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol Biochem 33:1759–1768

    Article  CAS  Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  • Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng HY (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009) Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biol Biochem 41:1262–1269

    Article  CAS  Google Scholar 

  • Hu L, Cao L, Zhang R (2014) Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World J Microb Biotechnol 30:1085–1092

    Article  CAS  Google Scholar 

  • Jiang X, Cao L, Zhang R (2014) Effects of addition of nitrogen on soil fungal and bacterial biomass and carbon utilisation efficiency in a city lawn soil. Soil Res 52:97–105

    Article  CAS  Google Scholar 

  • Jin H (2010) Characterization of microbial life colonizing biochar and biochar-amended soils. PhD Dissertation, Cornell University, Ithaca, NY

  • Kasin I, Ohlson M (2013) An experimental study of charcoal degradation in a boreal forest. Soil Biol Biochem 65:39–49

    Article  CAS  Google Scholar 

  • Kim JS, Sparovek S, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:648–690

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  PubMed  CAS  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40:425–433

    Article  CAS  Google Scholar 

  • Kroppenstedt RM, Greinermai E, Kornwendisch F (1984) Analysis of fatty acids and other lipids of actinomycetes and coryneform bacteria. Syst Appl Microbiol 5:273–273

    Google Scholar 

  • Kuhlbusch TAJ (1998) Black carbon and the global carbon cycle. Science 280:1903–1904

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236

    Article  CAS  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 1–12

    Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems: a review. Mitig Adapt Strat Glob Chang 11:395–419

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lopez-Urrutia A, Moran XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822

    Article  PubMed  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term priming effects and the mineralisation of biochar following its incorporation into soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, Nobili MD, Lin Q, Devonshire BJ, Brookes PC (2013) Microbial biomass growth following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol Biochem 57:513–523

    Article  CAS  Google Scholar 

  • Maestrini B, Nannipieri P, Abiven S (2015) A meta-analysis on pyrogenic organic matter induced priming effect. GCB Bioenergy 7:577–590

    Article  CAS  Google Scholar 

  • Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163:256–263

    Article  CAS  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Article  PubMed  CAS  Google Scholar 

  • Metting FB (1993) Structure and physiological ecology of soil microbial communities. In: Metting FB (ed) Soil microbial ecology—applications in agricultural and environmental management. Library of Congress, New York, pp 3–26

    Google Scholar 

  • Micks P, Aber JD, Boone RD, Davidson EA (2004) Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. For Ecol Manag 196:57–70

    Article  Google Scholar 

  • Mitchell PJ, Simpson AJ, Soong R, Simpson MJ (2015) Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biol Biochem 81:244–254

    Article  CAS  Google Scholar 

  • Muhammad N, Dai Z, Xiao K, Meng J, Brookes PC, Liu X, Wang H, Wu J, Xu J (2014) Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226:270–278

    Article  CAS  Google Scholar 

  • Nguyen BT, Koide RT, Dell C, Drohan P, Skinner H, Adler PR, Nord A (2014) Turnover of soil carbon following addition of switchgrass-derived biochar to four soils. Soil Sci Soc Am J 78:531–537

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Package ‘vegan’ version 2.0-2 [Documentation file].

  • ÓNeill B (2007) Microbial communities in Amazonian dark earth soils analyzed by culture-based and molecular approaches. MS thesis, Cornell University, Ithaca NY

  • Parsons LL, Smith MS (1989) Microbial utilization of carbon-14-glucose in aerobic vs. anaerobic denitrifying soils. Soil Sci Soc Am J 53:1082–1085

    Article  CAS  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Pugliese S, Jones T, Preston MD, Hazlett P, Tran H, Basiliko N (2014) Wood ash as a forest soil amendment: the role of boiler and soil type on soil property response. Can J Soil Sci 94:621–634

    Article  CAS  Google Scholar 

  • Quilliam RS, Marsden K, Gertler C, Rousk J, DeLuca TH, Jones DL (2012) Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are influenced by time since application and reapplication rate. Agric Ecosyst Environ 158:192–199

    Article  CAS  Google Scholar 

  • Ramezanian A, Dahlin AS, Campbell CD, Hillier S, OEborn I (2015) Assessing biogas digestate, pot ale, wood ash and rockdust as soil amendments: effects on soil chemistry and microbial community composition. Acta Agric Scand B-S P 65:383–399

    CAS  Google Scholar 

  • Ringelberg DB, Stair JO, Almeida J, Norby RJ, O’Neill EG, White DC (1997) Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J Environ Qual 26:495–503

    Article  CAS  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124

    Article  CAS  Google Scholar 

  • Scharenbroch BC, Meza EN, Catania M, Fite K (2013) Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. J Environ Qual 42:1372–1385

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh BP, Cowie AL (2014) Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep-UK 4:e3687

    Google Scholar 

  • Singh BP, Cowie AL, Smernik RJ (2012a) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46:11770–11778

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Abiven S, Torn MS, Schmidt MWI (2012b) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939

    Article  PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2005) Bacterial and fungal contributions to C-sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255

    Article  CAS  Google Scholar 

  • Song YJ, Zhang XL, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Fertil Soils 50:321–332

    Article  CAS  Google Scholar 

  • Soong JL, Cotrufo MF (2015) Annual burning of a tall grass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Glob Chang Biol. doi:10.1111/gcb.12832

    PubMed  Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1:289–303

    Article  CAS  Google Scholar 

  • Stahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62:4136–4146

    PubMed  PubMed Central  CAS  Google Scholar 

  • Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41:1301–1310

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2008) Soil carbon saturation: evaluation and corroboration by long-term incubations. Soil Biol Biochem 40:1741–1750

    Article  CAS  Google Scholar 

  • Stewart CE, Zheng J, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy 5:153–164

    Article  CAS  Google Scholar 

  • Sun D, Jun M, Zhang W, Guan X, Huang Y, Lan Y, Gao J, Chen W (2012) Implication of temporal dynamics of microbial abundance and nutrients to soil fertility under biochar application-field experiments conducted in a brown soil cultivated with soybean, north China. Trans Tech Publications, Switzerland, pp 384–394

    Google Scholar 

  • Sun D, Meng J, Chen W (2013) Effects of abiotic components induced by biochar on microbial communities. Acta Agric Scand B 63:633–641

    CAS  Google Scholar 

  • Thiet RK, Frey SD, Six J (2006) Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biol Biochem 38:837–844

    Article  CAS  Google Scholar 

  • Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Ecol 46:450–456

    Article  Google Scholar 

  • Watzinger A, Feichtmair S, Kitzler B, Zehetner F, Kloss S, Wimmer B, Zechmeister-Boltenstern S, Soja G (2014) Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: results from a short-term incubation and pot experiment. Eur J Soil Sci 65:40–51

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9

    Article  PubMed Central  CAS  Google Scholar 

  • Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol Appl 6:257–262

    Article  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    Article  PubMed  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils 29:111–129

  • Zhang Y, Tan QL, Hu CX, Zheng CS, Gui HP, Zeng WN, Sun XC, Zhao XH (2015) Differences in responses of soil microbial properties and trifoliate orange seedling to biochar derived from three feedstocks. J Soil Sediment 15:541–551

    Article  CAS  Google Scholar 

  • Zheng J, Stewart CE, Cotrufo MF (2012) Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J Environ Qual 41:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by the 100 Talents Program of the Chinese Academy of Sciences (CAS) (Y421081001); Colorado Department of Agriculture, Natural science foundation of Guangdong province (2014A030310161); Director fund of South China Botanical Garden (201408); Cotrufo-Hoppess fund for soil ecology research; and the Chinese Scholarship Council (CSC) funding (201206380021). This work is part of the USDA-ARS GRACENet project. Analyses were conducted at the EcoCore analytical facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Denef, K., Stewart, C.E. et al. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol Fertil Soils 52, 1–14 (2016). https://doi.org/10.1007/s00374-015-1047-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1047-7

Keywords

Navigation