Skip to main content

Advertisement

Log in

Responses of carbon transfer, partitioning, and residence time to land use in the plant–soil system of an alpine meadow on the Qinghai-Tibetan Plateau

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We conducted an in situ 13C pulse-labeling experiment from July to September 2011, involving three land use types: native alpine meadow with winter grazing (native meadow), cultivated perennial Elymus nutans (perennial grass), and annual Avena sativa (annual grass) pastures in the Qinghai-Tibetan Plateau. Thirty-two days after labeling, 32, 23, and 43 % of recovered 13C of native meadow, perennial grass, and annual grass, respectively, were released by shoot respiration, and 43, 34, and 22 % were allocated to belowground C pools. About half of 13C allocated to belowground C pools was released by soil respiration. Mean residence time of net assimilate C in this ecosystem was 67, 118, and 43 days for native meadow, perennial grass, and annual grass, respectively. Our results imply that species abundance and root/shoot ratio are the major controlling factors of soil C stocks in high-altitude grassland ecosystems, explaining 35 and 73 %, respectively. We suggest that conversion to monoculture for food production on the Qinghai-Tibetan Plateau may deteriorate soil health through rapid loss of soil organic C. The main cause of C transfer reduction after conversion to monoculture is the change in species richness and root/shoot ratio. Together with previous research studies, our results also support the finding that moderate grazing benefits grassland C transfer and stock, owing to higher species richness and root/shoot ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Bruggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460. doi:10.1111/j.1469-8137.2008.02755.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bahn M, Janssens IA, Reichstein M, Smith P, Trumbore SE (2010) Soil respiration across scales: towards an integration of patterns and processes. New Phytol 186:292–296. doi:10.1111/j.1469-8137.2010.03237.x

    Article  PubMed  Google Scholar 

  • Brand WA, Coplen TB (2012) Stable isotope deltas: tiny, yet robust signatures in nature. Isot Environ Health Stud 48:393–409. doi:10.1080/10256016.2012.666977

    Article  CAS  Google Scholar 

  • Bruggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschutz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489. doi:10.5194/bg-8-3457-2011

    Article  Google Scholar 

  • Butler JL, Bottomley PJ, Griffith SM, Myrold DD (2004) Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biol Biochem 36:371–382. doi:10.1016/j.soilbio.2003.10.011

    Article  CAS  Google Scholar 

  • Comeau LP, Lemke RL, Knight JD, Bedard-Haughn A (2013) Carbon input from 13C-labeled crops in four soil organic matter fractions. Biol Fertil Soils 49:1179–1188

    Article  CAS  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. doi:10.1002/rcm.5129

    CAS  PubMed  Google Scholar 

  • Domanski G, Kuzyakov Y, Siniakina SV, Stahr K (2001) Carbon flows in the rhizosphere of ryegrass (Lolium perenne). J Plant Nutr Soil Sci 164:381–387. doi:10.1002/1522-2624(200108)164:4<381::aid-jpln381>3.0.co;2-5

    Article  CAS  Google Scholar 

  • Dong QM, Zhao XQ, Ma YS, Shi JJ, Wang YL, Li SX, Yang SH, Sheng L (2011) Effects of yak grazing intensity on quantitative characteristics of plant community in a two-seasonal rotation pasture in Kobresia Parva meadow. Chin J Ecol 30:2233–2239

    Google Scholar 

  • Fensham RJ, Silcock JL, Firn J (2014) Managed livestock grazing is compatible with the maintenance of plant diversity in semidesert grasslands. Ecol Appl 24:503–517

    Article  CAS  PubMed  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/s0929-1393(96)00126-6

    Article  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu X, Li X, Guggenberger G, Miehe G, Kuzyakov Y (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538. doi:10.1111/j.1365-2486.2011.02557.x

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson LC, Matchett JR (2001) Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82:3377–3389. doi:10.1890/0012-9658(2001)082[3377:fagrbp]2.0.co;2

    Article  Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334

    Article  CAS  Google Scholar 

  • Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12:1285–1298. doi:10.1111/j.1365-2486.2006.01153.x

    Article  Google Scholar 

  • Kocyigit R, Rice CW (2006) Partitioning CO2 respiration among soil, rhizosphere microorganisms, and roots of wheat under greenhouse conditions. Commun Soil Sci Plant Anal 37:1173–1184. doi:10.1080/00103620600623392

    Article  CAS  Google Scholar 

  • Kuzyakov YV (2001) Tracer studies of carbon translocation by plants from the atmosphere into the soil (A review). Eurasian Soil Sci 34:28–42

    Google Scholar 

  • Kuzyakov Y, Domanski G (2002) Model for rhizodeposition and CO2 efflux from planted soil and its validation by C-14 pulse labelling of ryegrass. Plant Soil 239:87–102. doi:10.1023/a:1014939120651

    Article  CAS  Google Scholar 

  • Li Y (2008) Effects of different land use modes on organic carbon and its component in alpine meadow soil. J Anhui Agric Sci 36:5951

    CAS  Google Scholar 

  • Li Y, Cao G, Wang Y (2006) Effects of reclamation on soil organic carbon in Haibei alpine meadow. Chin J Ecol 25:911–915

    CAS  Google Scholar 

  • Li YY, Dong SK, Wen L, Wang XX, Wu Y (2014) Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai-Tibetan Plateau. Geoderma 213:178–184. doi:10.1016/j.geoderma.2013.08.022

    Article  CAS  Google Scholar 

  • Lundegardh H (1921) Ecological studies in the assimilation of certain forest plants and shore plants. Svensk Bot Tidsk 15:46–94

    CAS  Google Scholar 

  • Meharg AA, Killham K (1990a) Carbon distribution within the plant and rhizosphere in laboratory and field-grown Lolium perenne at different stages of development. Soil Biol Biochem 22:471–477. doi:10.1016/0038-0717(90)90180-8

    Article  CAS  Google Scholar 

  • Meharg AA, Killham K (1990b) The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant Soil 123:1–7

    CAS  Google Scholar 

  • Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation. Rapid Commun Mass Spectrom 14:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Saggar S, Mackay AD, Hedley CB (1999) Hill slope effects on the vertical fluxes of photosynthetically fixed 14C in a grazed pasture. Aust J Soil Res 37:655–666

    Google Scholar 

  • Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43:499–528

    Article  Google Scholar 

  • Sousa FP, Ferreira TO, Mendonça ES, Romero RE, Oliveira JGB (2012) Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agric Ecosyst Environ 148:11–21. doi:10.1016/j.agee.2011.11.009

    Article  CAS  Google Scholar 

  • Studer MS, Siegwolf RTW, Abiven S (2014) Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques. Biogeosciences 11:1637–1648. doi:10.5194/bg-11-1637-2014

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Wang F, Wang W, Chen Z, Wang Q (2007) Effects of changes in land use on plant community structure and species diversity in alpine meadows. J Lanzhou Univ Nat Sci 43:58–63

    CAS  Google Scholar 

  • Wang MJ, Han GD, Cui GW, Zhao ML (2010) Effects of grazing intensity on the biodiversity and productivity of meadow steppe. Chin J Ecol 29:862–868

    Google Scholar 

  • Wang SP, Wilkes A, Zhang ZC, Chang XF, Lang R, Wang YF, Niu HS (2011) Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agric Ecosyst Environ 142:329–340. doi:10.1016/j.agee.2011.06.002

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2008) Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol Biochem 40:625–637. doi:10.1016/j.soilbio.2007.09.022

    Article  CAS  Google Scholar 

  • Wu Y, Tan H, Deng Y, Wu J, Xu X, Wang Y, Tang Y, Higashi T, Cui X (2009) Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Glob Chang Biol 16:2322–2333. doi:10.1111/j.1365-2486. 2009. 02069.x

    Article  Google Scholar 

  • Yang YH, Fang JY, Smith P, Tang YH, Chen AP, Ji CJ, Hu HF, Rao S, Tan K, He JS (2009) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Chang Biol 15:2723–2729. doi:10.1111/j.1365-2486.2009.01924.x

    Article  Google Scholar 

  • Yao HY, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77. doi:10.1016/j.soilbio.2012.05.006

    Article  CAS  Google Scholar 

  • Zhang Z, Duan J, Wang S, Luo C, Chang X, Zhu X, Xu B, Wang W (2012) Effects of land use and management on ecosystem respiration in alpine meadow on the Tibetan plateau. Soil Tillage Res 124:161–169. doi:10.1016/j.still.2012.05.012

    Article  Google Scholar 

  • Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei Alpine Meadow Ecosystem Research Station. Ambio 28:642–647

    Google Scholar 

  • Zhao L, Li YN, Zhao XQ, Xu SX, Tang YH, Yu GR, Gu S, Du MY, Wang QX (2005) Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chin Sci Bull 50:1767–1774. doi:10.1360/04wd0316

    Article  CAS  Google Scholar 

  • Zhao L, Li Y, Xu S, Zhou H, Gu S, Yu G, Zhao X (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Glob Chang Biol 12:1940–1953. doi:10.1111/j.1365-2486.2006.01197.x

    Article  Google Scholar 

  • Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S, Zhao X (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences 7:1207–1221

    Article  CAS  Google Scholar 

  • Zhou HK, Zhao XQ, Wang SP, Zhao L, Xu SX (2008) Vegetation responses to a long-term grazing intensity experiment in alpine shrub grassland on Qinghai-Tibet Plateau. Acta Bot Boreal-Occident Sin 28:2080–2093

    Google Scholar 

  • Zou J, Zhao L, Xu S, Xu X, Chen D, Li Q, Zhao N, Luo C, Zhao X (2014) Field 13CO2 pulse labeling reveals differential partitioning patterns of photoassimilated carbon in response to livestock exclosure in a Kobresia meadow. Biogeosciences 11:4381–4391. doi:10.5194/bg-11-4381-2014

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA05070000), the Key Program of National Natural Science Foundation of China (41030105), the Key Project of Qinghai Province (No. 2011-Z-734 and 2013-Z-941Q), and the National Key Technologies R&D Program (2014BAC05B04). We gratefully acknowledge Xingliang Xu for his help in the field sampling work of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Chen, D., Zhao, N. et al. Responses of carbon transfer, partitioning, and residence time to land use in the plant–soil system of an alpine meadow on the Qinghai-Tibetan Plateau. Biol Fertil Soils 51, 781–790 (2015). https://doi.org/10.1007/s00374-015-1024-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1024-1

Keywords

Navigation