Skip to main content

Advertisement

Log in

Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The effects and associated mechanisms of the application of organic residues or their derived biochar on the dynamics of soil organic C and soil CO2 efflux in planted soils are poorly understood. This paper investigated the impact of bamboo leaf and the derived biochar applications on soil CO2 efflux and labile organic C in an intensively managed Chinese chestnut plantation in a 12-month field study. The treatments studied included Control, application of bamboo leaf (Leaf), and application of biochar (Biochar). The Leaf treatment increased (P < 0.05) soil CO2 efflux and concentrations of water-soluble organic C (WSOC) and microbial biomass C (MBC). The Biochar treatment increased soil CO2 efflux and WSOC and MBC only in the first month after application, but such effects diminished thereafter. The annual cumulative soil CO2 emission was increased by 16 % by the Leaf treatment as compared to the Control, but there was no difference between the Biochar and Control treatments. The soil organic C (SOC) storage was increased by biochar addition but not by bamboo leaf addition. An exponential relationship between soil temperature and soil CO2 efflux was observed regardless of the treatment. Soil CO2 efflux was correlated to soil WSOC (P < 0.05) but not to soil MBC or moisture content. The apparent temperature sensitivity (Q 10) of soil CO2 efflux was ranked as Leaf > Biochar > Control. In comparison with the application of fresh bamboo leaf, pyrolyzed bamboo leaf (biochar) application decreased CO2 effluxes and increased C sequestration in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arevalo CBM, Bhatti JS, Chang SX, Sidders D (2011) Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric Ecosyst Environ 141:342–349

    Article  Google Scholar 

  • Bååth E, Arnebrant K (1994) Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol Biochem 26:995–1001

    Article  Google Scholar 

  • Badia D, Marti C, Aguirre AJ (2013) Straw management effects on CO2 efflux and C storage in different Mediterranean agricultural soils. Sci Total Environ 465:233–239

    Article  PubMed  CAS  Google Scholar 

  • Bai SH, Blumfield TJ, Reverchon F (2014) The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol Fertil Soils 50:37–44

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Adhya TK, Rao KS, Manna MC (2012) Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Tillage Res 124:119–130

    Article  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46

    Article  CAS  Google Scholar 

  • Chen JH, Liu XY, Zheng JW, Zhang B, Lu HF, Chi ZZ, Pan GX, Li LQ, Zheng JF, Zhang XH, Wang JF, Yu XY (2013) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Cheng Y, Cai ZC, Chang SX, Wang J, Zhang JB (2012) Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biol Fertil Soils 48:941–946

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Global Change Biol 12:154–164

    Article  Google Scholar 

  • Dempster DN, Gleeson DB, Solaiman ZM, Jones DL, Murphy DV (2012) Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354:311–324

    Article  CAS  Google Scholar 

  • Ding WX, Cai Y, Cai ZC, Zheng XH (2006) Diel pattern of soil respiration in N-amended soil under maize cultivation. Atmos Environ 40:3294–3305

    Article  CAS  Google Scholar 

  • Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Pineiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biol 18:3237–3251

    Article  Google Scholar 

  • Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol 42:2311–2364

    Article  CAS  Google Scholar 

  • Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8:245–252

    Article  Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob Biogeochem Cycles 20, doi:10.1029/2005GB002644

  • Gounga ME, Xu SY, Wang Z (2008) Nutritional and microbiological evaluations of chocolate-coated Chinese chestnut (Castanea mollissima) fruit for commercial use. J Zhejiang Univ Sci B 9(9):675–683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graf A, Weihermuller L, Huisman JA, Herbst M, Bauer J, Vereecken H (2008) Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences 5:1175–1188

    Article  Google Scholar 

  • Hagedorn F, Hiltbrunner D, Streit K, Ekblad A, Lindahl B, Miltner A, Frey B, Handa IT, Hattenschwiler S (2013) Nine years of CO2 enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities. Soil Biol Biochem 57:390–400

    Article  CAS  Google Scholar 

  • Inoue T, Koizumi H (2012) Effects of environmental factors upon variation in soil respiration of a Zoysia japonica grassland, central Japan. Ecol Res 27:445–452

    Article  Google Scholar 

  • Iqbal J, Hu RG, Du LJ, Lan L, Shan L, Tao C, Ruan LL (2008) Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol Biochem 40:2324–2333

    Article  Google Scholar 

  • Iqbal J, Hu RG, Feng ML, Lin S, Malghani S, Ali IM (2010) Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China. Agric Ecosyst Environ 137:294–307

    Article  CAS  Google Scholar 

  • Jiang PK, Xu QF, Xu ZH, Cao ZH (2006) Seasonal changes in soil labile organic carbon pool within a phyllostachy praecox stand under high rate fertilization and winter mulch in subtropical China. For Ecol Manag 236:30–36

    Article  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852

    Article  CAS  Google Scholar 

  • Laganiere J, Pare D, Bergeron Y, Chen HYH (2012) The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biol Biochem 53:18–27

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:142–144

    Article  Google Scholar 

  • Li YF, Jiang PK, Chang SX, Wu JS, Lin L (2010) Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. J Soils Sediments 10:739–747

    Article  CAS  Google Scholar 

  • Li YF, Zhang JJ, Chang SX, Jiang PK, Zhou GM, Shen ZM, Wu JS, Lin L, Wang ZS, Shen MC (2014) Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools. For Ecol Manag 312:161–169

    Article  Google Scholar 

  • Liu J, Jiang PK, Wang HL, Zhou GM, Wu JS, Yang F, Qian XB (2011) Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For Ecol Manag 262:1131–1137

    Article  Google Scholar 

  • Lou YS, Li ZP, Zhang TL (2003) Carbon dioxide flux in a subtropical agricultural soil of China. Water Air Soil Pollut 149:281–293

    Article  CAS  Google Scholar 

  • McCulley RL, Boutton TW, Archer SR (2007) Soil respiration in a subtropical savanna parkland: response to water additions. Soil Sci Soc Am J 71:820–828

    Article  CAS  Google Scholar 

  • Mo J, Zhang W, Zhu W, Gundersen P, Fang Y, Li D, Wang H (2008) Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biol 14:403–412

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Peng YY, Thomas SC, Tian DL (2008) Forest management and soil respiration: implications for carbon sequestration. Environ Rev 16:93–111

    Article  CAS  Google Scholar 

  • Peng SS, Piao SL, Wang T, Sun JY, Shen ZH (2009) Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biol Biochem 41:1008–1014

    Article  CAS  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Bending GD (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Prochazkova B, Hruby J, Dovrtel J, Dostal O (2003) Effects of different organic amendment on winter wheat yields under long-term continuous cropping. Plant Soil Environ 49:433–438

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  • Rosenberg O, Persson T, Högbom L, Jacobson S (2010) Effects of wood-ash application on potential carbon and nitrogen mineralisation at two forest sites with different tree species, climate and N status. For Ecol Manag 260:511–518

    Article  Google Scholar 

  • Scheer C, Grace PR, Rowlings DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47–58

    Article  CAS  Google Scholar 

  • Sheng H, Yang YS, Yang ZJ, Chen GS, Xie JS, Guo JF, Zou SQ (2010) The dynamic response of soil respiration to land-use changed in subtropical China. Global Change Biol 16:1107–1121

    Article  Google Scholar 

  • Slavich PG, Sinclair K, Morris SG, Kimber SWL, Downie A, Van Zwieten L (2013) Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant Soil 366:213–227

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Smith MK, Smith JP, Stirling GR (2011) Integration of minimum tillage, crop rotation and organic amendments into a ginger farming system: impacts on yield and soilborne diseases. Soil Tillage Res 114:108–116

    Article  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Song XZ, Zhou GM, Jiang H, Yu SQ, Fu JH, Li WZ, Wang WF, Ma ZH, Peng CH (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19:418–428

    Article  CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  PubMed  CAS  Google Scholar 

  • Stanford G, English L (1949) Use of the flame photometer in rapid soil tests for K and Ca. Agron J 41:446–447

    Article  CAS  Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96

    Article  Google Scholar 

  • Tammeorg P, Simojoki A, Makela P, Stoddard FL, Alakukku L, Helenius J (2014) Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant Soil 374:89–107

    Article  CAS  Google Scholar 

  • Tang XL, Liu SG, Zhou GY, Zhang DY, Zhou CY (2006) Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biol 12:546–560

    Article  Google Scholar 

  • Thangarajan R, Bolan NS, Tian GL, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Total Environ 465:72–96

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y, Nishimura S, Akiyama H (2012) The relationship of water-soluble carbon and hot-water-soluble carbon with soil respiration in agricultural fields. Agric Ecosyst Environ 156:116–122

    Article  CAS  Google Scholar 

  • Uri V, Varik M, Aosaar J, Kanal A, Kukumagi M, Lohmus K (2012) Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For Ecol Manag 267:117–126

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DC (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Versini A, Nouvellon Y, Laclau JP, Kinana A, Mareschal L, Zeller B, Ranger J, Epron D (2013) The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical Eucalyptus plantation. For Ecol Manag 301:79–88

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • Wang YS, Wang YH (2003) Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv Atmos Sci 20:842–844

    Article  Google Scholar 

  • Wang JY, Zhang M, Xiong ZQ, Liu PL, Pan GX (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fertil Soils 47:887–896

    Article  CAS  Google Scholar 

  • Woolf D, Lehmann J (2012) Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon. Biogeochemistry 111:83–95

    Article  CAS  Google Scholar 

  • World Reference Base for Soil Resources (WRB) (2006) A framework for international classification, correlation and communication. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction-an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu JS, Jiang PK, Chang SX, Xu QF, Lin Y (2010) Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China. Can J Soil Sci 90:27–36

    Article  CAS  Google Scholar 

  • Wu FP, Jia ZK, Wang SG, Chang SX, Startsev A (2013) Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol Fertil Soils 49:555–565

    Article  CAS  Google Scholar 

  • Xu M, Qi Y (2001) Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest. Glob Biogeochem Cycles 15:687–696

    Article  CAS  Google Scholar 

  • Zavalloni C, Alberti G, Biasiol S, Delle Vedove G, Fornasier F, Liu J, Peressotti A (2011) Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Appl Soil Ecol 50:45–51

    Article  Google Scholar 

  • Zhang AF, Liu YM, Pan GX, Hussain Q, Li LQ, Zheng JW, Zhang XH (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275

    Article  CAS  Google Scholar 

  • Zhang T, Li YF, Chang SX, Jiang PK, Zhou GM, Liu J, Lin L (2013) Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions. Plant Soil 367:249–261

    Article  CAS  Google Scholar 

  • Zhang JJ, Li YF, Chang SX, Jiang PK, Zhou GM, Liu J, Wu JS, Shen ZM (2014) Understory vegetation management affected greenhouse gas emissions and labile organic carbon pools in an intensively managed Chinese chestnut plantation. Plant Soil 376:363–375

  • Zhu TB, Zhang JB, Yang WY, Cai ZC (2013) Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biol Fertil Soils 49:153–163

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Peng Xiao, Zhishuang Wang, Xueshuang Chen, and Zhimin Shen for their assistance in the gas sampling work. This work was financially supported by the National Natural Science Foundation of China (No. 31170576), the Key Foundation of Science and Technology Department of Zhejiang Province (No. 2011C12019), and Zhejiang Province Key Science and Technology Innovation Team (No. 2010R50030-10). We thank the two anonymous reviewers and the editor-in-chief for their constructive comments that greatly improved the quality of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Y., Chang, S.X. et al. Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol Fertil Soils 50, 1109–1119 (2014). https://doi.org/10.1007/s00374-014-0933-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0933-8

Keywords

Navigation