Skip to main content
Log in

Detection of GFP-labeled Paenibacillus polymyxa in autofluorescing pine seedling tissues

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Paenibacillus polymyxa P2b-2R is a bacterium that originated from internal lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) seedling stem tissue and fixes nitrogen (N) in association with pine and western red cedar (Thuja plicata Donn.). To evaluate endophytic colonization by this microorganism, we generated P. polymyxa P2b-2Rgfp, a green fluorescent protein (GFP)-labeled derivative of P2b-2R, and grew pine seedlings that were inoculated with the marked strain in a N-limited soil. Tissue disintegration during sample preparation precluded examination of needles for the GFP-labeled endophyte but GFP was detected on roots and in stems of 2- to 14-week-old pine seedlings using confocal laser scanning microscopy. Due to excessive autofluorescence of seedling tissues, labeled bacteria were clearly discernible only in stem tissues of 4- and 6-week-old seedlings. P2b-2Rgfp colonized the root surface extensively and was detected inside the stem cortex, primarily intracellularly. Some labeled bacteria appeared to contain endospores and none were detected in vascular tissues. We conclude that P. polymyxa P2b-2R is capable of endophytic colonization of pine seedlings with specific colonization sites that include the stem cortex but that GFP labeling is of limited value for localization of endophytic bacteria in pine seedling tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reference

  • Bal AS, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany (in press)

  • Bal AS, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soil. doi:10.1007/s00374-012-0699-9

  • Bal AS, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J For Res 42:807–813. doi:10.1139/X2012-023

    Article  CAS  Google Scholar 

  • Bent E, Chanway CP (2002) Potential for misidentification of a spore-forming Paenibacillus polymyxa isolate as an endophyte by using culture-based methods. Appl Environ Microbiol 68:4650–5652. doi:10.1128/AEM.68.9.4650-4652.2002

    Article  PubMed  CAS  Google Scholar 

  • Chalife M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805, http://www.jstor.org/stable/2882924

    Article  Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Bacillus strain. Can J Bot 69:507–511. doi:10.1139/b91-069

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2000) Dyadobacter fermentans gen. nov., sp. nov., a novel Gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 50:751–758

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Envirom Microbiol 71:1685–1693. doi:10.1128/AEM.71.4.1685-1693.2005

    Article  CAS  Google Scholar 

  • Doty SL (2011) Nitrogen-fixing endophytic bacteria for improved plant growth. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 183–199

    Chapter  Google Scholar 

  • Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118. doi:10.1016/j.femsec.2003.12.009

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Ishiwa H, Shibahara H (1985) New shuttle vectors for Escherichia coli and Bacillus subtilis. Jap J Genet 60:485–498. doi:10.1266/jjg.60.485

    Article  CAS  Google Scholar 

  • Itaya M, Shaheduzzaman SM, Matsui K, Omori A, Tsuji T (2001) Green marker for colonies of Bacillus subtilis. Biosci Biotech Biochem 65:579–583. doi:10.1271/bbb.65.579.h

    Article  CAS  Google Scholar 

  • Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees. Biology and applications series: forestry sciences vol. 80. Springer, Heidelberg, pp 95–105

    Google Scholar 

  • James EK, Olivares F (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Pl Sci 17:77–119. doi:10.1080/07352689891304195

    Article  Google Scholar 

  • Lee K, Choi C (1987) Growth and plasmid stability of recombinant E. coli cells producing hepatitis B surface antigen. Kor J Chem Engin 4:182–186. doi:10.1007/BF02697435

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Pl Sci 21:583–606. doi:10.1080/0735-260291044377

    Google Scholar 

  • Luchansky JB, Muriana PM, Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Molec Microbiol 2:637–646. doi:10.1111/j.1365-2958.1988.tb00072.x

    Article  CAS  Google Scholar 

  • Mikutta R, Kleber M, Kaiser K, Jahn R (2005) Organic matter removal from soils usinghydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sc Soc Amer J 69:120–135. doi:10.2136/sssaj2005.0120

    Article  CAS  Google Scholar 

  • Ono M, Murakami T, Kudo A, Isshiki M, Sawada H, Segawa A (2001) Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy. J Histochem Cytochem 49:305–312. doi:10.1177/002215540104900304

    Article  PubMed  CAS  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14. doi:10.1139/m81-002

    Article  PubMed  CAS  Google Scholar 

  • Rosado AS, Duarte GF, Seldin L, Van Elsas JD (1998) Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. Appl Environ Microbiol 64:2770–2779

    PubMed  CAS  Google Scholar 

  • Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth-promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196. doi:10.1111/j.1574-6941.1999.tb00610.x

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. doi:10.1128/AEM.02239-08

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300. doi:10.1128/AEM.71.11.7292-7300.2005

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, van West P, Gow NAR, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481. doi:10.1111/j.1365-2672.2009.04123.x

    Article  PubMed  CAS  Google Scholar 

  • Timonen S (1995) Avoiding autofluorescence problems: time-resolved fluorescence microscopy with plant and fungal cells in ectomycorrhiza. Mycorrhiza 5:455–458. doi:10.1007/s005720050097

    Google Scholar 

  • Weyens N, Boulet J, Adriaensen D, Timmermans J-P, Prinsen E, Oevelen S, D’Haen J, Smeets K, Lelie D, Taghavi S, Vangronsveld J (2012) Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356:217–230. doi:10.1007/s11104-011-0831-x

    Article  CAS  Google Scholar 

  • Yegorenkova I, Tregubova K, Matora L, Burygin G, Ignatov V (2010) Use of ELISA with antiexopolysaccharide antibodies to evaluate wheat-root colonization by the rhizobacterium Paenibacillus polymyxa. Cur Microbiol 61:376–380. doi:10.1007/s00284-010-9622-5

    Article  CAS  Google Scholar 

  • Zimmer M (2002) Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–782. doi:10.1021/cr010142r

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by an NSERC Graduate Scholarship and Ministry of Advanced Education of British Columbia (Pacific Leaders Graduate Student Fellowship) to RA and an NSERC Discovery Grant to CPC. We are deeply indebted to Dr. M Itaya for gifting us plasmid pBSGV104 for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Peter Chanway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Chanway, C.P. Detection of GFP-labeled Paenibacillus polymyxa in autofluorescing pine seedling tissues. Biol Fertil Soils 49, 111–118 (2013). https://doi.org/10.1007/s00374-012-0727-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0727-9

Keywords

Navigation