Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal root colonization and soil P availability are positively related to agrodiversity in Mexican maize polycultures

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In Los Tuxtlas, Mexico, the local Popoluca people maintain the traditional management of their maize agroecosystems. However, it is not known whether the loss of agrodiversity over recent decades has affected mycorrhizal populations, nutrient availability, and crop productivity. This study utilized linear mixed effect models to analyze the relationship between agrodiversity (three, six, and greater than or equal to eight cultivated species) and (a) arbuscular mycorrhizal fungi (AMF) inoculum potential, measured as the most probable number (MPN) of propagules and colonization level, (b) nutrient availability, and (c) aboveground maize productivity. We also investigated the relationship between soil nutrient content and inoculum potential. Soil samples were taken before planting, and during flowering, in the 2009 maize cycle. We found that AMF colonization level of maize roots and P availability increased with planted species richness, but that this effect only occurred at the flowering sampling date. Plots with a higher MPN of propagules presented increased C and NO 3 contents and lower C/N ratio than those with lower MPN of propagules, regardless of agrodiversity. Soils that produced the highest maize root colonization level also featured high P availability and N content. We conclude that decreased agrodiversity in these traditional systems does not significantly affect the soil MPN of propagules, but may have a negative impact on the ability of the mycorrhizal community to colonize maize roots, as well as reducing the availability of P, which is often the most limiting nutrient in tropical soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. milpas are the slash and burn polyculture system most common in Mesoamerica, where the main products are maize, squashes, and beans, among many others including perennials; this itinerant system coexisted with tropical forests by incorporating very long fallow periods (Gomez-Pompa 1987). Currently, the term milpa is also applied for more simplified and intensified versions of the original traditional slash and burn system.

References

  • Alguacil MM, Lumini E, Roldan A, Salinas-García JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  PubMed  CAS  Google Scholar 

  • Allan JE (1971) The preparation of agricultural samples for analysis by atomic absorption spectroscopy. Varian Techtron, Walnut Creek

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Kluwer, Dordrecht, pp 47–62

    Chapter  Google Scholar 

  • Allen EB, Rincón E, Allen MF, Pérez-Jiménez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–274

    Article  Google Scholar 

  • Álvarez-Solís JD, Anzueto-Martínez MJ (2004) Actividad microbiana del suelo bajo diferentes sistemas de producción de maíz en Los Altos de Chiapas, México. Agrociencia 38:13–22

    Google Scholar 

  • Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility—a handbook of methods, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Arihara J, Karasawa T (2000) Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize. Soil Sci Plant Nutr 46:43–51

    Article  Google Scholar 

  • Bagyaraj JD, Stürmer SL (2008) Arbuscular mycorrhizal fungi (AMF). In: Moreira FM, Huising EJ, Bignell DE (eds) A handbook of tropical soil biology: sampling and characterization of belowground biodiversity. James & James, Earthscan, pp 131–143

    Google Scholar 

  • Bever JD (2002a) Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc Lond 269:2595–2601

    Article  Google Scholar 

  • Bever JD (2002b) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant Soil 244:281–290

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  CAS  Google Scholar 

  • Burrows RL, Pfleger FL (2002) Arbuscular mycorrhizal fungi respond to increasing plan diversity. Can J Bot 80:120–130

    Article  Google Scholar 

  • Clapperton MJ, Reid DM (1992) A relationship between plant growth and increasing VA mycorrhizal inoculum density. New Phytol 120:227–234

    Article  Google Scholar 

  • Covacevich F, Echeverría HE, Aguirrezabal LAN (2007) Soil available phosphorus status determines indigenous mycorrhizal colonization of field and glasshouse-grown spring wheat from Argentina. Appl Soil Ecol 35:1–9

    Article  Google Scholar 

  • de Miranda JCC, Harris PJ (1994) Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol 128:103–108

    Article  CAS  Google Scholar 

  • Ding X, Fu L, Liu C, Chen F, Hoffland E, Shen J, Zhang F, Feng G (2011) Positive feedback between acidification and organic phosphate mineralization in the rhizosphere of maize (Zea mays L.). Plant Soil 349:13–24

    Article  CAS  Google Scholar 

  • Douds DD, Miller PD Jr (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Eilittä M, Arteaga LF, Diaz M, Guerrero C, Herrera B, Narvaez G, Paré L, Robles G, Triomphe B (2004) Cultivating maize with Mucuna in the Los Tuxtlas region of South-eastern Veracruz, Mexico. In: Eillitä M, Mureithi J, Derpsch R (eds) Green manure/cover crop systems of smallholder farms. Kluwer, Dordrecht, pp 99–127

    Chapter  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GWT (2000) Host plant effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444

    Article  Google Scholar 

  • Fisher RA, Yates F (1970) Statistical tables for biological agriculture and medical research. Hafner, Michigan

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  PubMed  CAS  Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular–mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soils 35:214–218

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gomez-Pompa A (1987) On Maya silviculture. Mex Stud /Estud Mex 3:1–17

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 439:819–823

    Article  Google Scholar 

  • Guadarrama P, Álvarez-Sánchez FJ (1999) Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, México. Mycorrhiza 8:267–270

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Todd TC (1996) Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can J Bot 74:19–25

    Article  CAS  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277:1302–1305

    Article  CAS  Google Scholar 

  • Hu J, Lin X, Wang J, Cui X, Dai J, Chu H, Zhang J (2010) Arbuscular mycorrhizal fungus enhances P acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Appl Microbiol Biotechnol 88:781–787

    Article  PubMed  CAS  Google Scholar 

  • Ilag LL, Rosales AM, Elazegui FA, Mew TW (1987) Changes in the population of infective endomycorrhizal fungi in a rice-based cropping system. Plant Soil 103:67–73

    Article  Google Scholar 

  • ISO 10390 (1994) Soil quality—determination of pH

  • Jakobsen I, Chen B, Munkvold L, Lundsgaard T, Zhu YG (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AM communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  PubMed  CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular–arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107

    Article  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Tchienkoua M, Sanginga N, Horst WJ (2006) Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soil of southern Cameroon. Plant Soil 284:385–397

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  PubMed  CAS  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stüber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sc 40:358–364

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg (2000) Promotion of utilization of arbuscular mycorrhizal through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  PubMed  CAS  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Mangan SA, Eom AH, Adler GH, Yavitt JB, Herre EA (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687–700

    Article  PubMed  Google Scholar 

  • McGonigle TC, Miller MH (2000) The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi: a test of the inoculum density hypothesis. Appl Soil Ecol 14:147–155

    Article  Google Scholar 

  • Miyasaka SC, Habte M (2001) Plant mechanisms and mycorrhizal symbiosis to increase P uptake. Commun Soil Sci Plant Anal 32:1101–1147

    Article  CAS  Google Scholar 

  • Mohammad A, Mitra B, Khan AG (2004) Effects of sheared root inoculum of Glomus intraradices on wheat grown at different phosphorus levels in the field. Agric Ecosyst Environ 103:245–249

    Article  Google Scholar 

  • Moorman T, Reeves FB (1979) The role of endomycorrhizae in revegetation practices in the semi-arid West. II. A bioassay to determine the effect of land disturbance on endomycorrhizal populations. Am J Bot 66:14–18

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Oliveira CA, Sá NMH, Gomes EA, Marriel IE, Scotti MR, Guimaraes CT, Schaffert RE, Alves VMC (2009) Assessment of mycorrhizal community in the rhizosphere of maize (Zea mays L.) genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil using denaturing gradient gel electrophoresis (DGGE). Appl Soil Ecol 41:249–258

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Porter WM (1979) The "most probable number" method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soils. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture. Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Sasvári Z, Posta K (2010) Effect of different plant densities on the diversity of arbuscular mycorrhizal fungi community in a long-term maize monocrop system. Span J Agric Res 8(S1):S123–S130

    Google Scholar 

  • Sasvári Z, Hornok L, Posta K (2011) The community structure of arbuscular mycorrhzal fungi in roots of maize grown in a 50-year monoculture. Biol Fertil Soils 47:167–176

    Article  Google Scholar 

  • Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor Appl Genet 120:1029–1039

    Article  PubMed  Google Scholar 

  • Shukla A, Kumar A, Jha A, Ajit RDVKN (2012) Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol Fertil Soils 48:109–116

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn

    Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith FA, Smith SE, Reid RJ (1999) Membranes and nutrition: opportunities for integration and progress. In: Gissel-Nielsen G, Jensen A (eds) Plant nutrition—molecular biology and genetics. Kluwer, Dordrecht, pp 291–301

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  PubMed  CAS  Google Scholar 

  • Spence LA, Dickie IA, Coomes DA (2011) Arbuscular mycorrhizal inoculum potential: a mechanism promoting positive diversity–invasibility relationships in mountain beech forests in New Zealand? Mycorrhiza 21:309–314

    Article  PubMed  Google Scholar 

  • Sudová R, Vosátka M (2007) Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil 296:77–83

    Article  Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  CAS  Google Scholar 

  • Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbial Ecol 65:323–338

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • van der Putten WH (2000) Pathogen-driven forest diversity. Nature 404:232–233

    Article  PubMed  Google Scholar 

  • Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen E, Kiers ET, Bakelaar PNC, Röling WFM, van der Heijden MGA (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant Soil 350:43–55

    Article  CAS  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  PubMed  Google Scholar 

  • Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68

    Article  PubMed  Google Scholar 

  • Wang XR, Pan Q, Chen FX, Yan XL, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 27:173–181

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Dora Trejo, Vinicio Sosa Fernández, and Jose Luis Blanco for invaluable advice during the development of this research; to the farmers and local authorities of Ocotal Chico and Mazumiapan for actively participating and facilitating the project; to Isis de la Rosa for figure edition; and to two anonymous reviewers whose comments greatly improved the manuscript. This research was funded by the FOMIX 94427 project (CONACYT-Veracruz Government) as part of the BioPop project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simoneta Negrete-Yankelevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrete-Yankelevich, S., Maldonado-Mendoza, I.E., Lázaro-Castellanos, J.O. et al. Arbuscular mycorrhizal root colonization and soil P availability are positively related to agrodiversity in Mexican maize polycultures. Biol Fertil Soils 49, 201–212 (2013). https://doi.org/10.1007/s00374-012-0710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0710-5

Keywords

Navigation