Skip to main content

Advertisement

Log in

Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

In tropical areas, where crop production is limited by low soil quality, the development of techniques improving soil fertility without damage to the environment is a priority. In French Guiana, we used subsistence farmer plots on poor acidic soils to test the effect of different organic amendments, bitter manioc peel (M), sawdust (Sw) and charcoal (Ch), on soil nutrient content, earthworm abundance and yard-long bean (Vigna unguiculata sesquipedalis) production. The peregrine Pontoscolex corethrurus was the only earthworm species found. Pod production and plant growth were lowest in unamended soil. The application of a mixture of manioc peel and charcoal (M + Ch) improved legume production compared with other organic mixtures. It combined the favourable effects of manioc peel and charcoal. Manioc peel improved soil fertility through its low C:N ratio and its high P content, while charcoal decreased soil acidity and exchangeable Al and increased Ca and Mg availability, thus alleviating the possible toxic effects of Al on plant growth. The M + Ch treatment was favourable to P. corethrurus, the juvenile population of which reached a size comparable to that of the nearby uncultivated soil. The application of a mixture of manioc peel and charcoal, by improving crop production and soil fertility and enhancing earthworm activity, could be a potentially efficient organic manure for legume production in tropical areas where manioc is cultivated under slash-and-burn shifting agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AFNOR (1999) Qualité des sols. AFNOR, Paris

  • AFNOR (2001) Qualité de l’eau. AFNOR, Paris

  • Anderson JM, Ingram J (1993) Tropical soil biology and fertility. A handbook of methods, 2nd edn. CAB, Oxford

    Google Scholar 

  • Baize D (2000) Guide des analyses en pédologie, 2nd edn. INRA, Paris

    Google Scholar 

  • Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P, Lavelle P (1987) Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecidae) on the fixation and mineralization of nitrogen. In: Bonvicini Pagliai AM, Omodeo P (eds) On earthworms, vol 2. Mucchi, Modena, pp 151–158

    Google Scholar 

  • Beare MH, Vikram Reddy M, Tian G, Srivastava SC (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of decomposer biota. Appl Soil Ecol 6:87–108

    Article  Google Scholar 

  • Brady NC (1996) Alternatives to slash-and-burn agriculture: a global imperative. Agric Ecosyst Environ 58:3–11

    Article  Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Brown GG (1995) How do earthworms affect microflora and faunal community diversity? In: Collins HP, Robertson GP, Klug MJ (eds) The significance and regulation of soil biodiversity. Kluwer, Dordrecht, pp 247–269

    Google Scholar 

  • Carcaillet C, Thinon M (1996) Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data. Rev Palaeobot Palynol 91:399–416

    Article  Google Scholar 

  • Chan ML, Jones JM, Pourkashanian M, Williams A (1999) Oxidative reactivity of coal chars in relation to their structure. Fuel 78:1539–1552

    Article  CAS  Google Scholar 

  • Edmonds RL (1987) Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington, U.S.A. Can J For Res 17:499–509

    CAS  Google Scholar 

  • FAO (1985) Tropical forestry action plan. FAO, Rome

  • Foy CD (1974) Effects of aluminium on plant growth. In: Carson EW (ed) The plant root and its environment. Virginia University Press, Charlottesville, pp 601–642

    Google Scholar 

  • Fragoso C (1985) Ecologia general de las lombrices terrestres (Oligochaeta: Annelida) de la region Boca del Chajul, Selva Lancandona, Estado de Chapias. Doctorate thesis, Universidad Nacional Autonoma de Mexico, Mexico

  • Glantz SA (1997) Primer of biostatistics, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Lehmann J, Zech W, (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Guillaumet JL (1996) Les plantes alimentaires des forêts humides intertropicales et leur domestication: exemples africains et américains. In: Hladik CM, Hladik A, Pagezy H, Linares OF, Koppert GJA, Froment A (eds) L’alimentation en forêt tropicale: intéractions bioculturelles et perspectives de développement. UNESCO, Paris, pp 121–130

    Google Scholar 

  • Holl WH, Horst J (1997) Description of sorption equilibria for ions onto activated carbon using the surface complexation theory. Water Sci Technol 35:287–294

    Article  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as soil conditioner. Int Achieve Future 5:12–23

    Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27:93–132

    Google Scholar 

  • Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Fertil Soils 5:188–194

    Article  Google Scholar 

  • Lavelle P, Barois I, Martin A, Zaidi Z, Schaefer R (1989) Management of earthworm populations in agro-ecosystems: a possible way to maintain soil quality? In: Clarholm M, Bergström L (eds) Ecology of arable land. Kluwer, Dordrecht, pp 109–122

    Google Scholar 

  • Mba CC (1983) Utilization of Eudrilus eugeniae for disposal of cassava peel. In: Satchell JE (eds) Earthworm ecology, from Darwin to vermiculture. Chapman and Hall, London, pp 315–321

    Google Scholar 

  • Mba CC (1996) Treated cassava peel vermicomposts enhanced earthworm activities and cowpea growth in field plots. Resour Conserv Recycl 17:219–226

    Article  Google Scholar 

  • Myers RJK, De Pauw E (1995) Strategies for management of soil acidity. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant-soil interactions at low pH: principles and management. Kluwer, Dordrecht, pp 729–741

    Google Scholar 

  • Nair VD, Prenzel J (1978) Calculations of equilibrium concentration of mono- and polynuclear hydroxyaluminium species at different pH and total aluminium concentrations. Z Pflanzenernahr Bodenkd 141:741–751

    CAS  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Google Scholar 

  • Salisbury FB, Ross CW (1985) Plant physiology, 3rd edn. Wadsworth, Belmont

    Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2:207–247

    Article  CAS  Google Scholar 

  • Senapati BK, Lavelle P, Giri S, Pashanasi B, Alegre J, Decaëns T, Jimenez JJ, Albrecht A, Blanchart E, Mahieux M, Rousseaux L, Thomas R, Panigrahi PK, Venkatachalam M (1999) In-soil earthworm technologies for tropical agroecosystems. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB, London, pp 199–237

    Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, Mc Clure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    CAS  Google Scholar 

  • Sparovek G (1998) Influence of organic matter and soil fauna on crop productivity and soil restoration after simulated erosion. Adv Geoecol 31:431–434

    Google Scholar 

  • Swift MJ (1977) The roles of fungi and animals in the immobilisation and release of nutrient elements from decomposing branch-wood. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Ecol Bull 25:193–202

    CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Tan KH (1982) Principles of soil chemistry. Dekker, New York

    Google Scholar 

  • Tian G, Brussaard L, Kang BT (1993) Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: effects on soil fauna. Soil Biol Biochem 25:731–737

    Article  Google Scholar 

  • Tian G, Kang BT, Brussaard L (1997) Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biol Biochem 29:369–373

    Article  CAS  Google Scholar 

  • Titoff A (1910) Die Adsorption von Gasen durch Kohle. Z Phys Chem Stöchiom Verwandtschlehre 74:641–678

    Google Scholar 

  • Topoliantz S, Ponge JF (2003) Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in the presence of charcoal. Appl Soil Ecol 23:267–271

    Article  Google Scholar 

  • Topoliantz S, Ponge JF, Arrouays D, Ballof S, Lavelle P (2002) Effect of organic manure and the endogeic earthworm Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) on soil fertility and bean production. Biol Fertil Soils 36:313–319

    Article  CAS  Google Scholar 

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical and biological properties of forest soils. Ecol Monogr 18:81–115

    CAS  Google Scholar 

  • Voundi Nkana JC, Demeyer A, Verloo MG (1998) Availability of nutrients in wood ash amended tropical acid soils. Environ Technol 19:1213–1221

    CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Google Scholar 

Download references

Acknowledgements

We thank the Mission pour la Création du Parc du Sud de la Guyane, the PPF Guyane of the Museum National d’Histoire Naturelle and the GIS Silvolab of French Guiana for financial support and commodities. We are grateful to Mr. Lobbini and his son, local farmers, for their technical assistance in the field. We also thank the Institut Pasteur (Lille, France) for cyanide analyses and the Institut National de la Recherche Agronomique (Arras, France) for mineral soil analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ponge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topoliantz, S., Ponge, JF. & Ballof, S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fertil Soils 41, 15–21 (2005). https://doi.org/10.1007/s00374-004-0804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-004-0804-9

Keywords

Navigation