Skip to main content
Log in

Forcing Posets with Large Dimension to Contain Large Standard Examples

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The dimension of a poset P, denoted \(\dim (P)\), is the least positive integer d for which P is the intersection of d linear extensions of P. The maximum dimension of a poset P with \(|P|\le 2n+1\) is n, provided \(n\ge 2\), and this inequality is tight when P contains the standard example \(S_n\). However, there are posets with large dimension that do not contain the standard example \(S_2\). Moreover, for each fixed \(d\ge 2\), if P is a poset with \(|P|\le 2n+1\) and P does not contain the standard example \(S_d\), then \(\dim (P)=o(n)\). Also, for large n, there is a poset P with \(|P|=2n\) and \(\dim (P)\ge (1-o(1))n\) such that the largest d so that P contains the standard example \(S_d\) is o(n). In this paper, we will show that for every integer \(c\ge 1\), there is an integer \(f(c)=O(c^2)\) so that for large enough n, if P is a poset with \(|P|\le 2n+1\) and \(\dim (P)\ge n-c\), then P contains a standard example \(S_d\) with \(d\ge n-f(c)\). From below, we show that \(f(c)={\varOmega }(c^{4/3})\). On the other hand, we also prove an analogous result for fractional dimension, and in this setting f(c) is linear in c. Here the result is best possible up to the value of the multiplicative constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Biró et al. [3] have studied the question of forcing large cliques in graphs in far greater detail than this elementary proposition. But this simple result suffices in establishing a parallel line of thought in graph theory.

  2. The inductive step in the proof of Theorem 1, as presented by Kimble in [22], is relatively compact, and some might even say that it is elegant. On the other hand, no entirely complete proof of the base case (\(n=4\)) has ever been written down—nor is this likely to happen. The problem is to show that if \(|P|=9\) and \(\dim (P)=4\), then P contains \(S_4\). The issue is that the analogous statement is not true when \(n=3\), as there are 20 posets of size 7 which have dimension 3 and do not contain a 3-dimensional subposet on 6 points.

  3. To be precise, in [3], Biró et al. conjectured that for a fixed small \(\epsilon >0\), a poset P with at most \(2n+1\) points and dimension at least \((1-\epsilon )n\) must contain a standard example \(S_d\) with d a positive fraction of n. Examples 1 and 2 show that this conjecture is too strong. Nevertheless, our Theorem 2 confirms the basic intuition behind their conjecture.

References

  1. Biró, C., Hamburger, P., Pór, A.: Standard examples as subposets of posets. Order 32, 293–299 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biró, C., Hamburger, P., Pór, A.: The proof of the removable pair conjecture for fractional dimension. Electron. J. Comb. 21, P1.63 (2014)

  3. Biró, C., Füredi, Z., Jahanbekam, S.: Large chromatic number and Ramsey graphs. Graphs Comb. 29, 1183–1191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blokhuis, A.: Extremal problems in finite geometries. In: Extremal Problems for Finite Sets. Bolyai Society Mathematical Studies, vol. 3, pp. 111–135 (1994)

  5. Bogart, K.P., Rabinovitch, I., Trotter, W.T.: A bound on the dimension of interval orders. J. Comb. Theory Ser. A 21, 319–328 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogart, K.P., Trotter, W.T.: Maximal dimensional partially ordered sets II. Characterization of \(2n\)-element posets with dimension \(n\). Discret. Math. 5, 33–43 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brightwell, G., Scheinerman, E.R.: On the fractional dimension of partial orders. Order 9, 139–158 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 41, 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63, 600–610 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdös, P., Kierstead, H., Trotter, W.T.: The dimension of random ordered sets. Random Struct. Algorithms 2, 253–275 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felsner, S., Trotter, W.T.: Dimension, graph and hypergraph coloring. Order 17, 167–177 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Felsner, S., Li, C.M., Trotter, W.T.: Adjacency posets of planar graphs. Discret. Math. 310, 1097–1104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Felsner, S., Trotter, W.T., Wiechert, V.: The dimension of posets with planar cover graphs. Graphs Comb. 31, 927–939 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7, 144–149 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Füredi, Z., Hajnal, P., Rödl, V., Trotter, W.T.: Interval orders and shift graphs. In: Hajnal, A., Sos, V.T. (eds.) Sets, Graphs and Numbers. Colloquium Mathematical Society Janos Bolyai, vol. 60, pp. 297–313 (1991)

  16. Füredi, Z., Kahn, J.: Dimension versus size. Order 5, 17–20 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hiraguchi, T.: On the dimension of orders. Sci. Rep. Kanazawa Univ. 4, 1–20 (1955)

    MathSciNet  MATH  Google Scholar 

  18. Hoşten, S., Morris, W.D.: The dimension of the complete graph. Discret. Math. 201, 133–139 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Howard, D.M., Trotter, W.T.: On the size of maximal antichains and the number of pairwise disjoint maximal chains. Discret. Math. 310, 2890–2894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Illés, T., Szőnyi, T., Wettl, F.: Blocking sets and maximal strong representative systems in finite projective planes. Mitt. Math. Sem. Giessen 201, 97–107 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Joret, G., Micek, P., Milans, K., Trotter, W. T., Walczak, B.: Tree-width and dimension. Combinatorica (2015). doi:10.1007/s00493-014-3081-8

  22. Kimble, R.J.: Extremal problems in dimension theory for partially ordered sets. Ph.D. Thesis, Massachusetts Institute of Technology (1973)

  23. Kleitman, D.J., Markovsky, G.: On Dedekind’s problem: the number of isotone boolean functions, II. Trans. Am. Math. Soc. 213, 373–390 (1975)

    MATH  Google Scholar 

  24. Rabinovitch, I.: The dimension theory of semiorders and interval orders. Ph.D. thesis, Dartmouth College (1973)

  25. Rabinovitch, I., Rival, I.: The rank of a distributive lattice. Discret. Math. 25, 275–279 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trotter, W.T.: Inequalities in dimension theory for posets. Proc. Am. Math. Soc. 47, 311–316 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. The Johns Hopkins University Press, Baltimore (1992)

    MATH  Google Scholar 

  28. Trotter, W.T., Bogart, K.P.: Maximal dimensional partially ordered sets III: a characterization of Hiraguchi’s inequality for interval dimension. Discret. Math. 15, 389–400 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Trotter, W.T., Moore, J.I.: The dimension of planar posets. J. Comb. Theory (B) 21, 51–67 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Trotter, W.T., Monroe, T.R.: Combinatorial problems for graphs and matrices. Discret. Math. 39, 87–101 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Trotter, W.T., Wang, R.: Dimension and matchings in comparability and incomparability graphs. Order (2015). doi:10.1007/s11083-015-9355-y

Download references

Acknowledgments

The authors thank Tamás Szőnyi, Ruidong Wang, and Bartosz Walczak for helpful ideas and conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Biró.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biró, C., Hamburger, P., Pór, A. et al. Forcing Posets with Large Dimension to Contain Large Standard Examples. Graphs and Combinatorics 32, 861–880 (2016). https://doi.org/10.1007/s00373-015-1624-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1624-4

Keywords

Mathematics Subject Classification

Navigation