Graphs and Combinatorics

, Volume 27, Issue 1, pp 61–72

Boxicity of Leaf Powers

Authors

    • Department of Computer Science and AutomationIndian Institute of Science
  • Mathew C. Francis
    • Department of Computer Science and AutomationIndian Institute of Science
  • Rogers Mathew
    • Department of Computer Science and AutomationIndian Institute of Science
Original Paper

DOI: 10.1007/s00373-010-0962-5

Cite this article as:
Chandran, L.S., Francis, M.C. & Mathew, R. Graphs and Combinatorics (2011) 27: 61. doi:10.1007/s00373-010-0962-5

Abstract

The boxicity of a graph G, denoted as boxi(G), is defined as the minimum integer t such that G is an intersection graph of axis-parallel t-dimensional boxes. A graph G is a k-leaf power if there exists a tree T such that the leaves of the tree correspond to the vertices of G and two vertices in G are adjacent if and only if their corresponding leaves in T are at a distance of at most k. Leaf powers are used in the construction of phylogenetic trees in evolutionary biology and have been studied in many recent papers. We show that for a k-leaf power G, boxi(G) ≤ k−1. We also show the tightness of this bound by constructing a k-leaf power with boxicity equal to k−1. This result implies that there exist strongly chordal graphs with arbitrarily high boxicity which is somewhat counterintuitive.

Keywords

Boxicity Leaf powers Tree powers Strongly chordal graphs Interval graphs

Copyright information

© Springer 2010