Skip to main content
Log in

Natural image noise level estimation based on local statistics for blind noise reduction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This study proposes an automatic noise estimation method based on local statistics for additive white Gaussian noise. Noise estimation is an important process in digital imaging systems. For example, the performance of an image denoising algorithm can be significantly degraded because of poor noise level estimation. Most of the literature on the subject tends to use the true noise level of a noisy image when suppressing noise artifacts. Moreover, even with the given true noise level, these denoising techniques still cannot attain the best result, particularly for images with complicated details. In this study, a patch-based estimation technique is used to estimate for noise level and applies it to the proposed blind image denoising algorithm. Our approach includes selecting low-rank sub-image with removing high-frequency components from the contaminated image. This selection is according to the gradients of patches with the same statistics. Consequently, we need to estimate the noise level from the selected patches using principal component analysis (PCA). For blind denoising applications, the proposed denoising algorithm integrates the undecimated wavelet-based denoising algorithms and PCA to develop the subjective and objective qualities of the observed image, which result from filtering processes. Experiment results depict that the suggested algorithm performs efficiently over a wide range of visual contents and noise conditions, as well as in additive noise. Associated with different conventional noise estimators, the proposed algorithm yields the best performance, higher-quality images, and faster running speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  2. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. Image Process. 15(8), 2269–2280 (2006)

    Article  Google Scholar 

  3. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Khalil, H.H., Rahmat, R.O., Mahmoud, W.A.: Estimation of noise in gray-scale and colored images using median absolute deviation (MAD). In: 3rd International Conference on Geometric Modeling and Imaging, 2008. GMAI 2008. IEEE (2008)

  5. Salmeri, M., Mencattini, A., Ricci, E., Salsano, A.: Noise estimation in digital images using fuzzy processing. In: Proceedings 2001 International Conference on Image Processing, 2001. IEEE (2001)

  6. Immerkaer, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64(2), 300–302 (1996)

    Article  Google Scholar 

  7. Rank, K., Lendl, M., Unbehauen, R.: Estimation of image noise variance. IEE Proc. Vis. Image Signal Process. 146(2), 80–84 (1999)

    Article  Google Scholar 

  8. Bilcu, R., Vehvilainen, M.: New method for noise estimation in images. In: NSIP 2005. Abstracts. IEEE-Eurasip Nonlinear Signal and Image Processing, IEEE (2005)

  9. Olsen, S.I.: Estimation of noise in images: an evaluation. CVGIP Gr. Models Image Process. 55(4), 319–323 (1993)

    Article  Google Scholar 

  10. Amer, A., Dubois, E.: Fast and reliable structure-oriented video noise estimation. IEEE Trans. Circuits Syst. Video Technol. 15(1), 113–118 (2005)

    Article  Google Scholar 

  11. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Martín-Fernández, M., Alberola-López, C.: Automatic noise estimation in images using local statistics. Additive and multiplicative cases. Image Vis. Comput. 27(6), 756–770 (2009)

    Article  Google Scholar 

  12. Shin, D.-H., Park, R.H., Yang, S., Jung, J.H.: Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans. Consum. Electron. 51(1), 218–226 (2005)

    Article  Google Scholar 

  13. Yang, S.-M., Tai, S.-C.: Fast and reliable image-noise estimation using a hybrid approach. J. Electron. Imaging 19(3), 033007-033007-15 (2010)

    Google Scholar 

  14. Liu, W.: Additive white Gaussian noise level estimation based on block SVD. In: IEEE Workshop on Electronics, Computer and Applications. IEEE (2014)

  15. Liu, W., Lin, W.: Additive white Gaussian noise level estimation in SVD domain for images. IEEE Trans. Image Process. 22(3), 872–883 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Amer, A., Mitiche, A., Dubois, E.: Reliable and fast structure-oriented video noise estimation. In: Proceedings of the 2002 International Conference on Image Processing. IEEE (2002)

  17. Corner, B., Narayanan, R., Reichenbach, S.E.: Noise estimation in remote sensing imagery using data masking. Int. J. Remote Sens. 24(4), 689–702 (2003)

    Article  Google Scholar 

  18. Pyatykh, S., Hesser, J., Zheng, L.: Image noise level estimation by principal component analysis. IEEE Trans. Image Process. 22(2), 687–699 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khmag, A., Ramli, A.R., Al-haddad, S.A.R., Yusoff, S., Kamarudin, N.H.: Denoising of natural images through robust wavelet thresholding and genetic programming. Vis. Comput.,4, 1–14 (2016)

  20. Zoran, D., Weiss, Y.: Scale invariance and noise in natural images. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE (2009)

  21. Ghazal, M., Amer, A.: Homogeneity localization using particle filters with application to noise estimation. IEEE Trans. Image Process. 20(7), 1788–1796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, P., Zhang, J.: Fast and reliable noise estimation algorithm based on statisti-cal hypothesis tests. In: Proceedings of IEEE International Conference on Visual Communications and Image Processing, San Diego, USA, pp. 27–30 (2012)

  23. Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)

  24. Lee, J., Hoppel, K.: Noise modeling and estimation of remotely-sensed images. In: Geoscience and Remote Sensing Symposium, 1989. IGARSS’89. 12th Canadian Symposium on Remote Sensing., 1989 International. IEEE (1989)

  25. Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Petersen, K., Pedersen, M.: The matrix cookbook Technical University Denmark, Kongens Lyngby, Denmark. Technical Report, Version (2012)

  27. Bigun, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 775–790 (1991)

    Article  Google Scholar 

  28. Khmag, A., Ramli, A.R., bin Hashim, S.J., Al-Haddad, S.A.R.: Additive noise reduction in natural images using second-generation wavelet transform hidden Markov models. IEEJ Trans. Electr. Electron. Eng. 11(3), 339–347 (2016)

  29. Ghazel, M., Freeman, G.H., Vrscay, E.R.: Fractal-wavelet image denoising revisited. IEEE Trans. Image Process. 15(9), 2669–2675 (2006)

    Article  Google Scholar 

  30. Khmag, A., Ramli, A.R., Al-Haddad, S.A.R., Hashim, S.J., Noh, Z.M., Najih, A.A.: Design of natural image denoising filter based on second-generation wavelet transformation and principal component analysis. J. Med. Imaging Health Inform. 5(6), 1261–1266 (2015)

    Article  Google Scholar 

  31. Database from University of Southern California. http://sipi.usc.edu/database/database.php?volume=misc&image=15#top accessed 2016/9/26

  32. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2 (2005). http://live.ece.utexas.edu/research/quality. Accessed 27 Mar 2017

  33. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(4), 30–45 (2009)

  34. Larson, E., Chandler, D.: Categorical subjective image quality CSIQ database (2009). http://vision.okstate.edu/csiq. Accessed 6 Nov 2016

  35. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  36. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J Am Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002)

    Article  Google Scholar 

  38. Gonzales, R., Woods, R.: Digital Image Processing. Prentice-Hall, Inc, Upper Saddle River (2002)

    Google Scholar 

  39. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with shape-adaptive principal component analysis. In: SPARS’09-Signal Processing with Adaptive Sparse Structured Representations (2009)

  40. Goossens, B., Pizurica, A., Philips, W.: Removal of correlated noise by modeling the signal of interest in the wavelet domain. IEEE Trans. Image Process. 18(6), 1153–1165 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ping, J., Jian-zhou, Z.: Fast and reliable noise level estimation based on local statistic. Pattern Recogn. Lett. 78, 8–13 (2016)

    Article  Google Scholar 

  42. Shao, L., Zhang, H., De Haan, G.: An overview and performance evaluation of classification-based least squares trained filters. IEEE Trans. Image Process. 17(10), 1772–1782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, G., Zhu, F., Ann Heng P.: An efficient statistical method for image noise level estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

  44. Jain, P., Tyagi, V.: An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis. Comput. 31(5), 657–674 (2014)

    Article  Google Scholar 

  45. Li, C., Bovik, A.C.: Three-component weighted structural similarity index. In: Farnand, S.P., Gaykema, F. (eds.) IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics. San Jose, CA (2009)

  46. MATLAB 2014a. https://www.mathworks.com/company/newsroom/mathworks-announces-release-2014a-of-the-matlab-and-simulink-product-families.html. Accessed 27 May 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asem Khmag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmag, A., Ramli, A.R., Al-haddad, S.A.R. et al. Natural image noise level estimation based on local statistics for blind noise reduction. Vis Comput 34, 575–587 (2018). https://doi.org/10.1007/s00371-017-1362-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1362-0

Keywords

Navigation