Skip to main content
Log in

INPAC: INdependent PAss Coding algorithm for robust image data transmission through low SNR channels

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A new strategy of data representation called INdependent PAss Coding (INPAC) is proposed in this paper for robust and reliable transmission of embedded zero wavelet (EZW) bit stream through noisy channels. Error handling capacity of the EZW is improved by incorporating the proposed INPAC algorithm to EZW algorithm. It suppress the effect of noise occurred in one pass on to another by restricting the data of corrupted pass to mix with the data of uncorrupted pass. For the robust and reliable reconstruction, it is essential to have some of the most important header data without error. This kind of data representation achieves a better quality of reconstruction with a slight increase in overhead of maximum 32 B. To evaluate the modified INPAC–EZW algorithm, the results are compared mathematically and perceptually (visual) with the robust block-based EZW in AWGN channel environment with 4- and 16-QAM modulation techniques and by considering various SNR values. Mathematical parameters peak signal-to-noise ratio (PSNR), compression ratio (CR) and structural similarity index (SSIM) are used to evaluate the performance of the modified algorithm. By considering the aforementioned channel conditions, the average percentage increase in PSNR is observed to be 26.97%, average improvement in CR is observed to be 1.129% and average percentage increase in SSIM is observed to be 12.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shapiro, J.M.: Embedded image coding using zero trees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  MATH  Google Scholar 

  2. Said, A., Pearlman, W.A.: A new, fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250 (1996)

    Article  Google Scholar 

  3. Creusere, C.D.: A new method of robust image compression based on the embedded zerotree wavelet algorithm. IEEE Trans. Image Process. 6(10), 1436–1442 (1997)

    Article  Google Scholar 

  4. Liu, J.-C., Hwang, W.-L., Hwang, W.-J., Chen, M.-S.: Robust block-based EZW image compression with channel noise optimized rate-distortion functions. In: Proceedings of the 1999 International Conference on Image Processing (ICIP 99), 24–28 October, Kobe, pp. 560–564 (1999)

  5. Naveen, Ch., Satpute, V.R., Keskar, A.G.: An efficient low dynamic range image compression using improved block based EZW. In: Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI),Kanpur, India, vol. 2015, pp. 1–6 (2015). doi:10.1109/WCI.2015.7495505

  6. Redmill, D.W., Kingsbury, N.G.: The ER-EC: an error-resilient technique for coding variable-length blocks of data. IEEE Trans. Image Process. 5(4), 565–574 (1996)

    Article  Google Scholar 

  7. Man, H., Kossentini, F., Smith, M.J.T.: Robust EZW image coding for noisy channels. IEEE Signal Process. Lett. 4(8), 227–229 (1997)

  8. Cui, J., Chen, C.W., Sun, Z.: Error resilient image coding with rate-compatible punctured convolutional codes. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS) (1998)

  9. Manji, S., Djuknic, G.: Bandwidth efficient and error resilient image coding for Rayleigh fading channels. In: 49th IEEE Vehicular Technology Conference (1999)

  10. Ogura, K., Miyazaki, A., Akaiwa, Y.: An error resilient still image transmission system for mobile radio communication. In: 49th IEEE Vehicular Technology Conference (1999)

  11. Yang, S.-H., Cheng, T.-C.: Error-resilient SPIHT image coding. Electron. Lett. 36(3), 208–210 (2000)

    Article  Google Scholar 

  12. Sanchez, V.S., Mandal, M.K.: Robust transmission of JPEG2000 images over noisy channels. In: International Conference on Consumer Electronics (ICCE ’2002) (2002)

  13. Baqai, S., Baqai, F., Hameed, U., Sheikh, S., Khokhar, A.: Error resilience of EZW coder for image transmission in lossy networks. In: Proceedings of the IEEE 4th International Symposium on Multimedia Software Engineering (MSE’02) (2002)

  14. Gaol, L., Karam, L.J., Reisslein, M., Abousleman, G.P.: Error-resilient image coding and transmission over wireless channels. In: IEEE International Sysmposium on Circuits and Systems (ISCAS) (2002)

  15. Wei, H.-K., Lee, Y.-S., Shih, Y.-H., Lee, C.-Y.: A novel fixed bit plane error resilient image coding for wireless multimedia transmission. In: International Conference on Image Processing (ICIP) (2002)

  16. Lee, P.-J., Chen, L.-G.: Error concealment algorithm using interested direction for JPEG 2000 image transmission. IEEE Trans. Consum. Electron. 49(4), 1395–1401 (2003)

    Article  Google Scholar 

  17. Boulgouris, N.V., Thomos, N., Strintzis, M.G.: Transmission of images over noisy channels using error-resilient wavelet coding and forward error correction. IEEE Trans. Circuits Syst. Video Technol. 13(12), 1170–1181 (2003)

    Article  Google Scholar 

  18. Lee, Y.-S., Ong, K.-K., Lee, C.-Y.: Error-resilient image coding (ERIC) with smart-IDCT error concealment technique for wireless multimedia transmission. IEEE Trans. Circuits Syst. Video Technol. 13(2), 176–181 (2003)

    Article  Google Scholar 

  19. Internet Database. http://sipi.usc.edu/database/, available on internet

  20. Internet Database. https://scien.stanford.edu/index.php/test-images-and-videos/, available on internet

  21. Wang, Z., Bovik, A.C.: Mean square error: love it or leave it? IEEE Signal Process. Mag. 26(1), 98–117 (2009)

    Article  Google Scholar 

  22. Release, I.T.U.-T.: Objective Perceptual Assessment of Video Quality: Full Reference Television. ITU-T, Geneva (2004)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Simoncelli, image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Taubman, D.S., Marcellin, M.W.: JPEG2000: standard for interactive imaging. Proc. IEEE 90(8), 1336–1357 (2002)

    Article  Google Scholar 

  25. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

    Article  Google Scholar 

  26. Auli-Llinas, F., Serra-Sagrista, J.: JPEG2000 quality scalability without quality layers. IEEE Trans. Circuits Syst. Video Technol. 18(7), 923–936 (2008)

    Article  Google Scholar 

  27. Wu, Z., Bilgin, A., Marcellin, M.W.: Error resilient decoding of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 17(12), 1752–1757 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Cheggoju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheggoju, N., Satpute, V.R. INPAC: INdependent PAss Coding algorithm for robust image data transmission through low SNR channels. Vis Comput 34, 563–573 (2018). https://doi.org/10.1007/s00371-017-1361-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1361-1

Keywords

Navigation