Skip to main content
Log in

Local stereo matching algorithm with efficient matching cost and adaptive guided image filter

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

To make a matching algorithm to satisfy the requirements of high precision and anti-interference, a novel stereo-matching algorithm with efficient matching cost and adaptive guided image filter is proposed. Firstly, we adopt a modified Census transform with a local texture metric to compute the initial cost. It can make full use of the cross-correlation information between pixels. Meanwhile, we incorporate the Census, color and gradient costs as a mixed matching cost algorithm. Then, we aggregate the costs with guided image filter based on adaptive rectangular support window instead of the traditional fixed support window. The variable kernel window is constructed by the local color similarity and spatial distance. In this way, less occluded points will be included in the support region. On this basis, we adopt integral image to further speed up the computation of this step. Finally, the initial disparity of each pixel is selected using winner takes all optimization and the final disparity maps are gained after post-processing. The experimental results demonstrate that the proposed algorithm not only achieves an average error rate of 5.22 % on the Middlebury stereo benchmark data set, but can also overcome the influence of illumination distortion in the matching effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Scharsterein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Kim, J.K., Lee, K.M., Choi, B.T.: A dense stereo matching using two-pass dynamic programming with generalized ground control points. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. pp. 1075–1082, San Diego (2005)

  3. Chang, X., Zhou, Z., Wang, L., Shi, Y., Zhao, Q.: Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 73–79, Hangzhou (2011)

  4. Bleyer, M., Gelautz, M.: Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions. Signal Process Image 22, 127–143 (2007)

    Article  Google Scholar 

  5. Papadakis, N., Caselles, V.: Multi-label depth estimation for graph cuts stereo problems. J. Math. Imaging Vis. 38, 70–82 (2010)

    Article  MathSciNet  Google Scholar 

  6. Besse, F., Rother, C., Fitzgibbon, A.: PMBP: patch match belief propagation for correspondence field estimation. Int. J. Comput. Vis. 110, 2–13 (2013)

    Article  Google Scholar 

  7. Yang, Q., Wang, L., Ahuja, N.: A constant-space belief propagation algorithm for stereo matching. In: Proceeding of IEEE Conference Computer Vision and Pattern Recognition, San Francisco (2010)

  8. Stefano, L.D., Marchionni, M., Mattoccia, S.: A fast area-based stereo matching algorithm. Image Vis. Comput. 22, 983–1005 (2004)

    Article  Google Scholar 

  9. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006)

    Article  Google Scholar 

  10. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 807-814, San Diego (2005)

  11. De-Maeztu, L., Villanueva, A., Cabeza, R.: Stereo matching using gradient similarity and locally adaptive support-weight. Pattern Recogn. Lett. 32, 1643–1651 (2011)

    Article  Google Scholar 

  12. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Computer Vision, ECCV’94, pp. 151–158. Springer, Berlin (1994)

  13. Lee, Z., Juang, J., Nguyen, T.: Local disparity estimation with three-mode cross census and advanced support weight. IEEE Trans. Multimed. 15, 1855–1864 (2013)

    Article  Google Scholar 

  14. Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1582–1599 (2009)

    Article  Google Scholar 

  15. Sun, C.: A fast stereo matching method. In: Digital Image Computing: Techniques and Applications, pp. 95–100, Csiro (1997)

  16. Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 858–863, San Juan (1997)

  17. Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16, 920–932 (1994)

    Article  Google Scholar 

  18. Boykov, Y., Veksler, O., Zabih, R.: A variable window approach to early vision. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1283–1294 (1998)

    Article  Google Scholar 

  19. Veksler, O.: Fast variable window for stereo correspondence using integral images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 556–561, Princeton (2003)

  20. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo matching system on graphics hardware. In: GPUCV, Barcelona (2011)

  21. Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: Proceedings of IEEE International Conference on Image Processing, pp. 2093–2096, Cario (2009)

  22. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 839–846, Bombay (1998)

  23. He, K., Shun, J., Tang, X.: Guided image filter. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)

    Article  Google Scholar 

  24. Hosni, A., Bleyer, M., Rhemann, C., Gelautz, M., Rother, C.: Real-time local stereo matching using guided image filtering. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 1–6, Barcelona (2011)

  25. De-Maeztu, L., Mattoccia, S., Villanueva, A., Cabeza, R.: Linear stereo matching. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1708–1715, Barcelona (2011)

  26. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. Circuit Syst. Video Technol 19, 1073–1079 (2009)

    Article  Google Scholar 

  27. Yang, Q., Ji, P., Li, D., Yao, S., Zhang, M.: Fast stereo matching using adaptive guided filtering. Image Vis. Comput. 32, 202–211 (2014)

    Article  Google Scholar 

  28. Scharstein, D., Szeliski, R.: Middlebury Stereo Vision Page. http://vision.middlebury.edu/stereo/. Accessed 20 Dec 2011

  29. Ambrosch, K., Kubinger, W.: Accurate hardware-based stereo vision. Comput. Vis. Image Underst. 114, 1303–1316 (2010)

    Article  Google Scholar 

  30. Hosni, A., Rhemann, C., Bleyer, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013)

    Article  Google Scholar 

  31. Wang, L., Liao, M., Gong, M., Yang, R., Nister, D.: High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In: Proceedings of 3DPVT, pp. 798–805, Chapel Hill (2006)

  32. Mattoccia, S., Giardino, S., Gambini, A.: Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering. In: Asian Conference on Computer Vision, pp. 371–380 (ACCV) (2009)

  33. Tang, Y., Shi, X., Xiao, T., Fan, J.: An improved image analogy method based on adaptive CUDA-accelerated neighborhood matching framework. Vis. Comput. 28, 743–753 (2012)

    Article  Google Scholar 

  34. Xu, Y., Zhao, Y., Ji, M.: Local stereo matching with adaptive shape support window based cost aggregation. Appl. Optics 53, 6885–6892 (2014)

    Article  Google Scholar 

  35. Liu, J., Li, C., M, F., W, Z.: 3D entity-based stereo matching with ground control points and joint second-order smoothness prior. Vis. Comput. 31, 1253–1269 (2015)

    Article  Google Scholar 

  36. Xu, Z., Ma, L., Kimachi, M., Suwa, M.: Efficient contrast invariants tereo correspondence using dynamic programming with vertical constraint. Vis. Comput. 24, 45–55 (2008)

    Article  Google Scholar 

  37. Kurt, M., Ozturk, A., Peers, P.: A compact tucker-based factorization model for heterogeneous subsurface scattering. In: TPCG, pp. 85–92 (2013)

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC) under Grant Nos. 61375025, 61075011, and 60675018, and also the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Yan, L. Local stereo matching algorithm with efficient matching cost and adaptive guided image filter. Vis Comput 33, 1087–1102 (2017). https://doi.org/10.1007/s00371-016-1264-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1264-6

Keywords

Navigation