Skip to main content
Log in

Direct raytracing of a closed-form fluid meniscus

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a direct raytracing method for implicitly described fluid surfaces that takes into account the effects of capillary solid coupling at the boundaries. The method is independent of the underlying fluid simulation method and solely based on distance fields. We make use of the closed-form solution of the meniscus shape at the fluid interface to achieve the effect of surface tension exerted by the solid object. The shape of the liquid at these boundaries is influenced by various physical properties such as the force of gravity and the affinity between the liquid and the solid material. We generate contact angles at the boundaries without the need for computationally intensive small-scale simulation. At render time, we combine the closed-form solution for a small-scale effect with the numerical solution of a large-scale simulation. Our method is applicable for any implicit representation of the fluid surface and does not require an explicit extraction of the surface geometry. Therefore, it is especially useful for particle-based simulations. Furthermore, the solution is guaranteed to yield the correct contact angle and, for certain scenarios, it delivers the entirely correct solution throughout the interface; even in general scenarios, it yields plausible results. As for an example, we implemented and tested the proposed method in the setting of a smoothed particle hydrodynamics (SPH) fluid simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), 48:1–48:7 (2007)

    Article  Google Scholar 

  2. Bærentzen, J.A., Aanæs, H.: Generating signed distance fields from triangle meshes. Tech. Rep. IMM-TR-2002-21, Informatics and Mathematical Modelling, Technical University of Denmark (2002)

  3. Bourque, E., Dufort, J.F., Laprade, M., Poulin, P., Chiba, N.: Simulating caustics due to liquid-solid interface menisci. In: Proceedings of the Second Eurographics Conference on Natural Phenomena, pp. 33–40 (2006)

  4. Clausen, P., Wicke, M., Shewchuk, J.R., O’Brien, J.F.: Simulating liquids and solid–liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32(2), 17:1–17:15 (2013)

    Article  MATH  Google Scholar 

  5. Deserno, M.: The shape of a straight fluid meniscus (2004). http://www.cmu.edu/biolphys/deserno/pdf/meniscus.pdf

  6. Fournier, P., Habibi, A., Poulin, P.: Simulating the flow of liquid droplets. In: Proceedings of the Graphics Interface 1998 Conference, pp. 133–142 (1998)

  7. Fraedrich, R., Auer, S., Westermann, R.: Efficient high-quality volume rendering of SPH data. IEEE Trans. Vis. Comput. Graph. 16(6), 1533–1540 (2010)

    Article  Google Scholar 

  8. Gourmel, O., Barthe, L., Cani, M.P., Wyvill, B., Bernhardt, A., Paulin, M., Grasberger, H.: A gradient-based implicit blend. ACM Trans. Graph. 32(2), 12:1–12:13 (2013)

    Article  MATH  Google Scholar 

  9. Gourmel, O., Pajot, A., Paulin, M., Barthe, L., Poulin, P.: Fitted BVH for fast raytracing of metaballs. Comput. Graph. Forum 29(2), 281–288 (2010)

    Article  Google Scholar 

  10. Hart, J.C.: Ray tracing implicit surfaces. ACM SIGGRAPH 93 Course Notes: Design, Visualization and Animation of Implicit Surfaces, pp. 1–16 (1993)

  11. Huber, M., Eberhardt, B., Weiskopf, D.: Boundary handling at cloth-fluid contact. Comput. Graph. Forum 34(1), 14–25 (2015)

    Article  Google Scholar 

  12. Jung, Y., Behr, J.: GPU-based real-time on-surface droplet flow in X3D. In: Proceedings of the 14th International Conference on 3D Web Technology, pp. 51–54. ACM (2009)

  13. Kaneda, K., Ikeda, S., Yamashita, H.: Animation of water droplets moving down a surface. J. Vis. Comput. Animat. 10(1), 15–26 (1999)

    Article  Google Scholar 

  14. Kaneda, K., Kagawa, T., Yamashita, H.: Animation of water droplets on a glass plate. In: Proceedings of Computer Animation, pp. 177–189 (1993)

  15. Lautrup, B.: Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. Institute of Physics Publishing, Bristol (2005)

    MATH  Google Scholar 

  16. Liu, Y., Zhu, H., Liu, X., Wu, E.: Real-time simulation of physically based on-surface flow. Vis. Comput. 21(8–10), 727–734 (2005)

    Article  Google Scholar 

  17. Lock, J.A., Adler, C.L., Ekelman, D., Mulholland, J., Keating, B.: Analysis of the shadow-sausage effect caustic. Appl. Opt. 42(3), 418–428 (2003)

    Article  Google Scholar 

  18. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  MathSciNet  Google Scholar 

  19. Museth, K.: VDB: high-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 32(3), 27:1–27:22 (2013)

    Article  MATH  Google Scholar 

  20. Nakata, N., Kakimoto, M., Nishita, T.: Animation of water droplets on a hydrophobic windshield. In: WSCG Conference Proceedings, pp. 95–103 (2012)

  21. Singh, J.M., Narayanan, P.: Real-time ray tracing of implicit surfaces on the GPU. IEEE Trans. Vis. Comput. Graph. 16(2), 261–272 (2010)

    Article  Google Scholar 

  22. Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid–solid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007)

    Article  Google Scholar 

  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 4. Publish or Perish, Houston (1999)

    MATH  Google Scholar 

  24. Stuppacher, I., Supan, P.: Rendering of water drops in real-time. In: Central European Seminar on Computer Graphics for Students (2007)

  25. Szirmay-Kalos, L., Umenhoffer, T.: Displacement mapping on the GPU—state of the art. Comput. Graph. Forum 27(6), 1567–1592 (2008)

  26. Takenaka, S., Mizukami, Y., Tadamura, K.: A fast rendering method for water droplets on glass surfaces. In: The 23rd International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 13–16 (2008)

  27. Wang, H., Mucha, P.J., Turk, G.: Water drops on surfaces. ACM Trans. Graph. 24(3), 921–929 (2005)

    Article  Google Scholar 

  28. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  29. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32(1), 5:1–5:12 (2013)

    Article  MATH  Google Scholar 

  30. Yu, Y.J., Jung, H.Y., Cho, H.G.: A new water droplet model using metaball in the gravitational field. Comput. Graph. 23(2), 213–222 (1999)

    Article  Google Scholar 

  31. Yuan, Y., Lee, T.R.: Contact angle and wetting properties. In: Bracco, G., Holst, B. (eds.) Surface Science Techniques, pp. 3–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Zhang, Y., Wang, H., Wang, S., Tong, Y., Zhou, K.: A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18(8), 1281–1289 (2012)

    Article  Google Scholar 

  33. Zhao, H.K., Merriman, B., Osher, S., Wang, L.: Capturing the behavior of bubbles and drops using the variational level set approach. J. Comput. Phys. 143(2), 495–518 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “Kooperatives Promotionskolleg Digital Media” at Stuttgart Media University and the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Morgenroth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 35062 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgenroth, D., Weiskopf, D. & Eberhardt, B. Direct raytracing of a closed-form fluid meniscus. Vis Comput 32, 791–800 (2016). https://doi.org/10.1007/s00371-016-1258-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1258-4

Keywords

Navigation