Skip to main content
Log in

Multiscale descriptors and metric learning for human body shape retrieval

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The aim of this paper was to show the usefulness of applying feature projection or metric learning techniques to multiscale descriptor spaces for the effective retrieval of human bodies of labeled subjects. Using learned subspace projections it is possible to strongly improve the retrieval performance obtained with state-of-the-art global descriptors, and, in some cases, to perform an effective feature fusion. Results obtained on different human scan datasets show that Linear Discriminant Analysis, applied to Histograms of Area Projection Transform and Shape DNA features after a preliminary dimensionality reduction, creates compact descriptors that are quite effective in improving the subject retrieval scores both when class (subject) examples are available in the training set and when only examples of classes not included in the test set are used for training. Other mappings tested are less effective even if still able to improve the results. Retrieval scores obtained in the same experimental settings used in recent related papers show that the approach based on our mapped features largely outperforms the other methods proposed for the task, even those specifically designed for human body characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barra, V., Biasotti, S.: 3D shape retrieval using kernels on extended reeb graphs. Pattern Recognit. 46(11), 2985–2999 (2013)

    Article  MATH  Google Scholar 

  2. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. In: Proceedings of 3DOR, pp. 1–8 (2008)

  3. Biasotti, S., Cerri, A., Abdelrahman, M., Aono, M., et al.: SHREC’14 track: retrieval and classification on textured 3D models. In: Proceedings of 3DOR, pp. 111–120 (2014)

  4. Bogo, F., Romero, J., Loper, M., Black, M.J.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings of CVPR. IEEE (2014)

  5. Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., et al.: Shrec’10 track: Robust shape retrieval. In: Proceedings of 3DOR, pp. 71–78 (2010)

  6. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Gr. (TOG) 30(1), 1 (2011)

    Article  Google Scholar 

  7. Clemmensen, L., Hastie, T., Witten, D., Ersbøll, B.: Sparse discriminant analysis. Technometrics 53(4) (2011)

  8. Fu, Y., Cao, L., Guo, G., Huang, T.S.: Multiple feature fusion by subspace learning. In: Proceedings of CBIR, pp. 127–134. ACM (2008)

  9. Giachetti, A., Lovato, C.: Radial symmetry detection and shape characterization with the multiscale area projection transform. In: Comput. Graph. Forum, vol. 31, pp. 1669–1678. Wiley Online Library (2012)

  10. Globerson, A., Roweis, S.T.: Metric learning by collapsing classes. In: Advances in Neural Information Processing Systems, vol. 18, pp. 451–458. MIT Press, Cambridge (2006)

  11. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems, vol. 17, pp. 513–520. MIT Press, Cambridge (2004)

  12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. Kokkinos, I., Bronstein, M.M., Litman, R., Bronstein, A.M.: Intrinsic shape context descriptors for deformable shapes. In: Proceedings of CVPR, pp. 159–166. IEEE (2012)

  14. Leifman, G., Meir, R., Tal, A.: Semantic-oriented 3d shape retrieval using relevance feedback. Vis. Comput. 21(8–10), 865–875 (2005)

    Article  Google Scholar 

  15. Lian, Z., Godil, A., Bustos, B., Daoudi, M., et al.: Shrec’11 track: shape retrieval on non-rigid 3d watertight meshes. Proc. 3DOR 11, 79–88 (2011)

    Google Scholar 

  16. Lian, Z., Godil, A., Sun, X., Zhang, H.: Non-rigid 3d shape retrieval using multidimensional scaling and bag-of-features. In: Proceedings of ICIP, pp. 3181–3184 (2010)

  17. Lian, Z., Zhang, J., Choi, S., ElNaghy, H., et al.: Shrec 15 track: non-rigid 3d shape retrieval. In: Proceedings of 3DOR, pp. 107–120 (2015)

  18. Litman, R., Bronstein, A., Bronstein, M., Castellani, U.: Supervised learning of bag-of-features shape descriptors using sparse coding. In: Computer Graphics Forum, vol. 33, pp. 127–136. Wiley Online Library (2014)

  19. van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)

    Google Scholar 

  20. Marini, S., Patané, G., Spagnuolo, M., Falcidieno, B.: Feature selection for enhanced spectral shape comparison. In: Proceedings of 3DOR, pp. 31–38 (2010)

  21. Ohbuchi, R., Furuya, T.: Distance metric learning and feature combination for shape-based 3d model retrieval. In: Proceedings of 3DOR, pp. 63–68. ACM (2010)

  22. Pickup, D., Sun, X., Rosin, P., Martin, R., et al.: Shrec 14 track: Shape retrieval of non-rigid 3d human models. In: Proceedings of 3DOR, pp. 101–110 (2014)

  23. Reuter, M., Wolter, F., Peinecke, N.: Laplace-beltrami spectra as ‘shape-dna’ of surfaces and solids. Comput. Aid. Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  24. Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3d object retrieval using topological information guided by conformal factors. Vis. Comput. 28(9), 943–955 (2012)

    Article  Google Scholar 

  25. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  26. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of SMI, pp. 167–178. IEEE (2004)

  27. Van Der Heijden, F., Duin, R., De Ridder, D., Tax, D.M.: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB. Wiley, London (2005)

    MATH  Google Scholar 

  28. Wang, J., Ma, K., Kumar Singh, V., Huang, T., Chen, T.: Bodyprint: Pose invariant 3d shape matching of human bodies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1591–1599 (2015)

  29. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giachetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giachetti, A., Isaia, L. & Garro, V. Multiscale descriptors and metric learning for human body shape retrieval. Vis Comput 32, 693–703 (2016). https://doi.org/10.1007/s00371-016-1234-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1234-z

Keywords

Navigation