Skip to main content
Log in

A novel local derivative quantized binary pattern for object recognition

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Designing efficient and effective keypoint descriptors for an image plays a vital role in many computer vision tasks. The traditional binary descriptors such as local binary pattern and its variants directly perform a binarization operation on the intensity differences of the local affine covariant regions, thus their performance usually drops a lot because of the limited distinctiveness. In this paper, we propose a novel image keypoint descriptor, namely local derivative quantized binary pattern for object recognition. To incorporate the spatial information, we first divide the local affine covariant region into several subregions according to the intensity orders. For each sub region, we quantize the intensity differences between the central pixels and their neighbors in an adaptive way, and then we order the differences and use a hash function to map the differences into binary codes. The binary codes are histogramed to form the feature of each subregion. Furthermore, we utilize multi-scale support regions and pool the histograms together to represent the features of the image. Our approach does not need prior codebook training and hence it is more flexible and easy to be implemented. Moreover, our descriptor can preserve more local brightness and edge information than the traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations and other geometric transformations. Finally we conduct extensive experiments on three challenging datasets (i.e., 53 Objects, ZuBuD, and Kentucky) for object recognition and the experimental results show that our descriptor outperforms the existing state-of-the-art descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

  4. Alcantarilla, P., Bartoli, A., Davison, A.: KAZE features. In: ECCV, pp. 214–227 (2012)

  5. Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)

    Article  Google Scholar 

  6. Satpathy, A., Jiang, X., Eng, H.L.: Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans. Image Process. 23(1), 287–297 (2014)

    Article  MathSciNet  Google Scholar 

  7. Singh, C., Walia, E., Mittal, N.: Robust two-stage face recognition approach using global and local features. Vis. Comput. 28(11), 1085–1098 (2012)

    Article  Google Scholar 

  8. Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Learning image descriptors with the boosting-trick. In: NIPS, pp. 278–286 (2012)

  9. Wu, H., Miao, Z., Wang, Y., Lin, M.: Optimized recognition with few instances based on semantic distance. Vis. Comput. 31(4), 367–375 (2015)

    Article  Google Scholar 

  10. Li, C., Zhou W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)

  11. Vu, N.S., Caplier, A.: Enhanced patterns of oriented magnitudes for face recognition and image matching. IEEE Trans. Image Process. 21(3), 1352–1365 (2012)

    Article  MathSciNet  Google Scholar 

  12. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, D.T., Zong, Z., Li, W., Ogunbona, P.: Object detecton using non-redundant local binary patterns. In: ICIP, pp. 4609–4612 (2010)

  14. Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Vis. Comput. 30(11), 1223–1232 (2014)

    Article  Google Scholar 

  15. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: ECCV, pp. 778–792 (2010)

  16. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571 (2011)

  17. Leutengger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: ICCV, pp. 2548–2555 (2011)

  18. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retinal keypoint. In: CVPR, pp. 510–517 (2012)

  19. Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. In: CVPR, pp. 2874–2881 (2013)

  20. Lin, L., Luo, P., Chen, X., Zeng, K.: Representing and recognizing objects with massive local image patches. Pattern Recognit. 45(1), 231–240 (2012)

    Article  MATH  Google Scholar 

  21. Jiang, B., Tang, J., Lin, L.: Robust feature point matching with sparse model. IEEE Trans. Image Process. 23(12), 5175–5186 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48(10), 2993–3003 (2015)

    Article  Google Scholar 

  23. Liu, W., Wang, J., Ji, R., Jiang, Y.-G., Chang, S.-F.: Supervised hasing with kernels. In: CVPR, pp. 2074–2081 (2012)

  24. Wang, J., Kumar, S., Chang, S.-F.: Semi-supervised hashing for scalable image retrieval. In: CVPR, pp. 3424–3431 (2010)

  25. Cao, Z., Yin. Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: CVPR, pp. 2707–2714 (2010)

  26. Guo, Z.H., Zhang, L., Zhang, D.: A completed moderning of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  27. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  28. Hussain, S., Triggs, B.: Visual recognition using local quantized patterns. In: ECCV, pp. 716–729 (2012)

  29. Satpathy, A., Jiang, X., Eng, H.-L.: LBP-based edge-texture features for object recognition. IEEE Trans. Image Process. 23(5), 1953–1964 (2014)

    Article  MathSciNet  Google Scholar 

  30. Guo, Z.H., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)

    Article  MATH  Google Scholar 

  31. Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)

    Article  MATH  Google Scholar 

  32. Zhu, C., Bichot, C.-E., Chen, L.: Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognit. 46(7), 1949–1963 (2013)

    Article  Google Scholar 

  33. Mu, Y.D., Yan, S.C., Liu, Y., Huang, T., Zhou, B.F.: Discriminative local binary patterns for human detection in personal album. In: CVPR, pp. 1–8 (2008)

  34. Zhang, J., Huang, K., Yu, Y., Tan, T.: Boosted local structured HOG-LBP for object localization. In: CVPR, pp. 1393–1400 (2011)

  35. Nguyen, D.T., Ogunbona, P., Li, W.Q.: A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognit. 46(5), 1485–1500 (2013)

    Article  Google Scholar 

  36. Hu, R.-X., Jia, W., Ling, H., Chao, Y., Gui, J.: Angular patter and binary angular pattern for shape retrieval. IEEE Trans. Image Process. 23(3), 1118–1127 (2014)

    Article  MathSciNet  Google Scholar 

  37. Qi, X., Xiao, R., Li, C.-G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)

    Article  Google Scholar 

  38. Lei, Z., Pietikainen, M., Li, S.Z.: Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)

    Article  Google Scholar 

  39. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors—Survey. http://www.robots.ox.ac.uk/~vgg/research/affine/

Download references

Acknowledgments

This work is supported partially by Hubei Provincial Natural Science Foundation of China (No.2013CFB152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanbo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Chen, C., Pei, X. et al. A novel local derivative quantized binary pattern for object recognition. Vis Comput 33, 221–233 (2017). https://doi.org/10.1007/s00371-015-1179-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1179-7

Keywords

Navigation