Skip to main content
Log in

Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a hierarchal feature extraction and ensemble classification-based framework for object detection is proposed. The proposed object detection technique is motivated by the hierarchical learning mechanism in primate visual cortex, where each layer processes information differently. Initially, pyramid histogram of oriented gradients (PHOG) based descriptors are selected to generate shift and scale invariant descriptors of an image. PHOG-based feature descriptors are then processed in multi-layered hierarchy, following feed forward models in brain’s visual cortex and exploited through ensemble classification techniques. The proposed cortex-inspired ensemble-based object detection (CI-EnsOD) system exploits hierarchical learning mechanism of visual cortex and it is computationally efficient compared to the existing cortex-inspired models. In addition, it reduces feature dimensionality and offers improved object detection performance. The performance of proposed technique is demonstrated using three publically available standard datasets. It is shown experimentally that the prototype selection in the proposed CI-EnsOD can be improved using k-means clustering. The obtained experimental results show that the proposed CI-EnsOD technique is more accurate and efficient than contemporary cortex-inspired object detection techniques. Finally, it is also observed that the proposed technique is capable of providing compact descriptors compared to principle component analysis and independent component analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1002, pp. 994–1000, 20–25 June 2005

  2. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 29(3), 411–426 (2007)

    Article  Google Scholar 

  3. Perrett, D.I., Oram, M.W.: Neurophysiology of shape processing. Image Vis. Comput. 11(6), 317–333 (1993)

    Article  Google Scholar 

  4. Thorpe, S.J.: Ultra-rapid scene categorization with a wave of spikes. In: Proceedings of the Second International Workshop on Biologically Motivated Computer Vision, pp. 1–15. Springer, Berlin (2002)

  5. Moshe, B.: A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cognit. Neurosci. 15(4), 600–609 (2003). doi:10.1162/089892903321662976

    Article  Google Scholar 

  6. DiCarlo, James J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)

    Article  Google Scholar 

  7. Haushofer, J., Kanwisher, N.: In the eye of the beholder: visual experience and categories in the human brain. Neuron 53(6), 773–775 (2007)

    Article  Google Scholar 

  8. McManus, J.N.J., Li, W., Gilbert, C.D.: Adaptive shape processing in primary visual cortex. In: Proceedings of the National Academy of Sciences, vol. 24, pp. 9739–9746, 14 June, 2011,

  9. Maximilian, R., Tomaso, P.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)

    Article  Google Scholar 

  10. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A Theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. In. AI Memo 2005-036/CBCL Memo 259, Massachusetts Institute of Technology, Cambridge, 2005

  11. Gabor, D.: Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  12. Jones, J.P., Larry, P.A.: The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1187–1211 (1987)

    Google Scholar 

  13. LeCun, Y., Fu Jie, H., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 102, pp. II-97–104 , 27 June–2 July 2004

  14. Amit, Y., Mascaro, M.: An integrated network for invariant visual detection and recognition. Vis. Res. 43(19), 2073–2088 (2003)

    Article  Google Scholar 

  15. Panzoli, D., de Freitas, S., Duthen, Y., Luga, H.: The cortexionist architecture: behavioural intelligence of artificial creatures. Vis. Comput. 26(5), 353–366 (2010). doi:10.1007/s00371-010-0424-3

    Article  Google Scholar 

  16. Heiko, W., Edgar, K.: Learning optimized features for hierarchical models of invariant object recognition. Neural Computat. 15(7), 1559–1588 (2003). doi:10.1162/089976603321891800

    Article  MATH  Google Scholar 

  17. Jiang, X., Zhong, F., Peng, Q., Qin, X.: Online robust action recognition based on a hierarchical model. Vis. Comput. 30(9), 1021–1033 (2014). doi:10.1007/s00371-014-0923-8

    Article  Google Scholar 

  18. Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013). doi:10.1007/s00371-012-0752-6

    Article  Google Scholar 

  19. Jafri, R., Ali, S., Arabnia, H., Fatima, S.: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis. Comput. 30(11), 1197–1222 (2014). doi:10.1007/s00371-013-0886-1

    Article  Google Scholar 

  20. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 881, pp. 886–893, 25 June 2005

  22. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  23. Wada, T., Huang, F., Lin, S., Watanabe, T., Ito, S., Yokoi, K.: Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection. In: Advances in Image and Video Technology, vol. 5414. Lecture Notes in Computer Science, pp. 37–47. Springer, Berlin (2009)

  24. Anna, B., Andrew, Z., Xavier, M.: Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM international conference on Image and Video Retrieval, pp. 401–408, ACM, Amsterdam, The Netherlands (2007)

  25. Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. Adv. Neural Inf. Process. Syst. 14, 1239–1245 (2001)

    Google Scholar 

  26. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 531, pp. 539–546, 20–25 June 2005

  27. Goyal, S., Benjamin, P.: Object Recognition Using Deep Neural Networks: A Survey. arXiv:1412.3684 (2014)

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

  29. Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput. Biol. 10(12), e1003963 (2014)

    Article  Google Scholar 

  30. Solgi, M., Juyang, W.: Developmental stereo: emergence of disparity preference in models of the visual cortex. IEEE Trans. Auton. Ment. Dev. 1(4), 238–252 (2009). doi:10.1109/TAMD.2009.2038360

    Article  Google Scholar 

  31. Abdullah, D., Murtza, I., Khan, A.: Feature extraction and reduction strategy based on pyramid HOG and hierarchal exploitation of cortex-like mechanisms. In: IEEE Multi Topic Conference (INMIC), pp. 160–165, 19–20 Dec 2013

  32. Lior, R.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010). doi:10.1007/s10462-009-9124-7

    Google Scholar 

  33. Zhang, C., Ma, Y., Polikar, R.: Ensemble learning. In: Ensemble Machine Learning. pp. 1–34. Springer, New York (2012)

  34. Jolliffe, I.: Principal component analysis. In: Everitt, B., Howell, D. (eds.) Encyclopedia of Statistics in Behavioral Science. Wiley, New York (2005)

  35. Jolliffe, I.T.: Principal Component Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  36. Stone, J.V.: Independent component analysis. In: Everitt, B., Howell, D. (eds.) Encyclopedia of Statistics in Behavioral Science. Wiley, New York (2005)

  37. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000). doi:10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  38. Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: Proceedings of International Conference on Image Processing (ICIP), vol. 512, pp. III-513–516, 14-17 Sept 2003

  39. Michael, J.S., Dana, H.B.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991). doi:10.1007/bf00130487

    Article  Google Scholar 

  40. Thedoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  41. Dalal, N.: INRIA person dataset. http://pascal.inrialpes.fr/data/human/ (2005)

  42. MIT CBCL PEDESTRIAN DATABASE #1. In: MIT, C.f.B.a.C.L.a.M.a. (ed.) (2000)

  43. Caltech motorbikes (side) dataset. In: Technology, C.I.o. (ed.) (2003)

  44. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999). doi:10.1111/1467-9868.00196

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifullah Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

No experiments were performed that involved Humans/Animals.

Informed consent

No human participants-based experiments were performed, so informed consent not needed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtza, I., Abdullah, D., Khan, A. et al. Cortex-inspired multilayer hierarchy based object detection system using PHOG descriptors and ensemble classification. Vis Comput 33, 99–112 (2017). https://doi.org/10.1007/s00371-015-1155-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1155-2

Keywords

Navigation