Skip to main content
Log in

Adaptive voids

Primal and dual adaptive cellular structures for additive manufacturing

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Additive manufacturing processes have the potential to change the way we produce everyday objects. Design for additive manufacturing focuses on dealing with the characteristics and constraints of a given additive process. These constraints include both geometric and material constraints which have a major impact on the feasibility, quality and cost of the printed object. When designing for additive manufacturing, one of the desirable objectives is to reduce the amount of material while maximising the strength of the printed part. For this, the inclusion of cellular structures in the design has been an efficient way to address these constraints while supporting other application-specific requirements. These structures, which are commonly inspired by shapes found in nature, provide high strength while maintaining a low mass. In this paper we propose the adaptive voids algorithm, an automatic approach to generate, given a volume boundary, a parameterised adaptive infill primal and/or dual cellular structure for additive manufacturing. The produced output can potentially be applied in various applications, including design and engineering, architecture, clothing and protective equipment, furniture and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alemanno, G., Cignoni, P., Pietroni, N., Ponchio, F., Scopigno, R.: Interlocking pieces for printing tangible cultural heritage replicas. In: Klein, R., Santos, P. (eds.) Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Association (2014)

  2. Ashby, M.F.: The properties of foams and lattices. Phil. Trans. R. Soc. A 364(1838), 15–30 (2006)

    Article  MathSciNet  Google Scholar 

  3. Atalay, F.B., Mount, D.M.: Pointerless implementation of hierarchical simplicial meshes and efficient neighbour finding in arbitrary dimensions. In: Proceedings of International Meshing Roundtable (IMR 2004), pp. 15–26 (2007)

  4. Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33(4), 96:1–96:10 (2014)

    Article  Google Scholar 

  5. Brackett, D.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M.: An error diffusion based method to generate functionally graded cellular structures. Comput. Struct. 138, 102–111 (2014)

    Article  Google Scholar 

  6. Brennan-Craddock, J., Brackett, D., Wildman, R., Hague, R.: The design of impact absorbing structures for additive manufacture. J. Phys. Conf. Ser. 382(1), 012,042 (2012)

    Article  Google Scholar 

  7. Calí, J., Calian, D.A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., Weyrich, T.: 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31(6), 130:1–130:8 (2012)

    Article  Google Scholar 

  8. Challis, V.J., Xu, X., Zhang, L.C., Roberts, A.P., Grotowski, J.F., Sercombe, T.B.: High specific strength and stiffness structures produced using selective laser melting. Mater. Design 63, 783–788 (2014)

    Article  Google Scholar 

  9. Chen, Y., Cadman, J., Zhou, S., Li, Q.: Computer-aided design and fabrication of bio-mimetic materials and scaffold micro-structures. Adv. Mater. Res. 213, 628–632 (2011)

    Article  Google Scholar 

  10. Chiu, W., Yeung, Y., Yu, K.: Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyp. J. 12(4), 214–221 (2006)

    Article  Google Scholar 

  11. Cook, D., Newbauer, S., Leslie, A., Gervasi, V., Kumpaty, S.: Unit-cell-based custom therman management through additive manufacturing. In: Proceedings of the 23rd Annual Solid Freeform Fabrication Symposium (2012)

  12. Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung, O., Pauly, M.: Assembling self-supporting structures. ACM Trans. Graph. 33(6), 214:1–214:10 (2014)

    Article  Google Scholar 

  13. Dumas, J., Hergel, J., Lefebvre, S.: Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans. Graph. 33(4), 98:1–98:10 (2014)

    Article  Google Scholar 

  14. Fryazinov, O., Vilbrandt, T., Pasko, A.: Multi-scale space-variant FRep cellular structures. Comput. Aided Design 45(1), 26–34 (2013) (Computer-aided multi-scale materials and product design)

  15. Gabrielli, R., Turner, I., Bowen, C.: Development of modelling methods for materials to be used as bone substitutes. Key Eng. Mater. 361–363, 903–906 (2008)

    Article  Google Scholar 

  16. Gibson, L.J., Ashby, M.F., Harley, B.A.: Cellular materials in nature and medicine. Cambridge (2010)

  17. Hildebrand, K., Bickel, B., Alexa, M.: Orthogonal slicing for additive manufacturing. Shape Model. Int. (SMI) Conf. 37(6), 669–675 (2013)

  18. Khoda, A.K.M., Ozbolat, I.T., Koc, B.: Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. Comput. Aided Design 45(12), 1507–1523 (2013). doi:10.1016/j.cad.2013.07.003

    Article  Google Scholar 

  19. Kumar, G.S., Pandithevan, P., Ambatti, A.R.: Fractal raster tool paths for layered manufacturing of porous objects. Virtual Phys. Prototyp. 4(2), 91–104 (2009)

    Article  Google Scholar 

  20. Lewiner, T., Velho, L., Lopes, H., Mello, V.: Simplicial isosurface compression. In: Vision, Modeling, and Visualization, pp. 299–306. IOS, Stanford (2004)

  21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., Chen, B.: Build-to-last: strength to weight 3d printed objects. ACM Trans. Graph. 33(4), 97:1–97:10 (2014)

    Google Scholar 

  22. Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W.: Chopper: partitioning models into 3d-printable parts. ACM Trans. Graph. 31(6), 129:1–129:9 (2012)

    Google Scholar 

  23. Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., Letang, J.M.: X-ray tomography applied to the characterization of cellular materials related finite element modeling problems. Porous Mater. 63(16), 2431–2443 (2003)

    Google Scholar 

  24. Maubach, J.: Local bisection refinement for n-simplicial grids generated by reflections. SIAM J. Sci. Stat. Comput. 16, 210–227 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Melchels, F.P.W., Barradas, A.M.C., Blitterswijk, CAv, Boer, Jd, Feijen, J., Grijpma, D.W.: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia 6(11), 4208–4217 (2010)

    Article  Google Scholar 

  26. Mello, V., Velho, L., Cavalcanti, P.R., Silva, C.: A generic programming approach to multiresolution spatial decompositions. Vis. Math. III 337–360 (2003)

  27. Moroni, L., de Wijn, J., van Blitterswijk, C.: 3d fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7), 974–985 (2006)

    Article  Google Scholar 

  28. Museth, K., Lait, J., Johanson, J., Budsberg, J., Henderson, R., Alden, M., Cucka, P., Hill, D., Pearce, A.: Openvdb: An open-source data structure and toolkit for high-resolution volumes. In: ACM SIGGRAPH 2013 Courses, SIGGRAPH ’13, pp. 19:1–19:1. ACM, New York (2013)

  29. Olivares, A.L., Marsal, l, Planell, J.A., Lacroix, D.: Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30), 6142–6149 (2009)

    Article  Google Scholar 

  30. Panozzo, D., Block, P., Sorkine-Hornung, O.: Designing unreinforced masonry models. ACM Trans. Graph. 32(4), 91:1–91:12 (2013)

    Google Scholar 

  31. Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.A., Adzhiev, V.: Procedural function-based modelling of volumetric microstructures. Graph. Models 73(5), 165–181 (2011)

    Article  Google Scholar 

  32. Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. 32(4), 81:1–81:10 (2013)

    Article  Google Scholar 

  33. Ramirez, D.A., Murr, L.E., Li, S.J., Tian, Y.X., Martinez, E., Martinez, J.L., Machado, B.I., Gaytan, S.M., Medina, F., Wicker, R.B.: Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528(1617), 5379–5386 (2011)

    Article  Google Scholar 

  34. Reinhart, G., Teufelhart, S.: Optimization of mechanical loaded lattice structures by orientating their struts along the flux of force. Procedia CIRP 12, 175–180 (2013) (Eighth CIRP Conference on Intelligent Computation in Manufacturing Engineering)

  35. Rivara, M.C.: A grid generator based on 4-triangles conforming mesh refinement algorithms. Int. J. Numer. Methods Eng. 24, 1343–1354 (1987)

    Article  MATH  Google Scholar 

  36. Medeiros e Sá, A., Rodriguez Echavarria, K., Arnold, D.: Dual joints for 3d-structures. Visual Comput. 30(12), 1321–1331 (2014)

    Article  Google Scholar 

  37. Medeiros e Sá, A., Rodriguez Echavarria, K., Griffin, M., Covill, D., Kaminski, J., Arnold, D.: Parametric 3D-fitted Frames for Packaging Heritage Artefacts. In: Arnold, D., Kaminski, J., Niccolucci, F., Stork, A. (eds.) VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage. The Eurographics Association (2012). doi:10.2312/VAST/VAST12/105-112

  38. Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput. Aided Design 37(3), 339–353 (2005)

    Article  Google Scholar 

  39. Stava, O., Vanek, J., Benes, B., Carr, N., Mch, R.: Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. 31(4), 48:1–48:11 (2012)

    Article  Google Scholar 

  40. Umetani, N., Schmidt, R.: Cross-sectional structural analysis for 3d printing optimization. In: SIGGRAPH Asia 2013 Technical Briefs, SA ’13, pp. 5:1–5:4. ACM, New York (2013)

  41. Vanek, J., Galicia, J.A.G., Benes, B.: Clever support: efficient support structure generation for digital fabrication. Comput. Graph. Forum (2014)

  42. Vanek, J., Galicia, J.A.G., Benes, B., Mch, R., Carr, N., Stava, O., Miller, G.S.: Packmerger: a 3d print volume optimizer. Comput. Graph. Forum 33(6), 322–332 (2014)

    Article  Google Scholar 

  43. Villalpando, L., Eiliat, H., Urbanic, R.J.: An optimization approach for components built by fused deposition modeling with parametric internal structures. Procedia CIRP 17, 800–805 (2014). doi:10.1016/j.procir.2014.02.050 (Variety Management in Manufacturing Proceedings of the 47th CIRP Conference on Manufacturing Systems)

  44. Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., Liu, X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. 32(6), 177:1–177:10 (2013)

    Google Scholar 

  45. Wettergreen, M., Bucklen, B., Starly, B., Yuksel, E., Sun, W., Liebschner, M.: Creation of a unit block library of architectures for use in assembled scaffold engineering. Bio-CAD 37(11), 1141–1149 (2005). doi:10.1016/j.cad.2005.02.005

    Google Scholar 

  46. Wieding, J., Wolf, A., Bader, R.: Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 37, 56–68 (2014)

    Article  Google Scholar 

  47. Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surfacemodels. Biomaterials 32(31), 7741–7754 (2011). doi:10.1016/j.biomaterials.2011.07.019

    Article  Google Scholar 

  48. Zhang, Z., Jones, D., Yue, S., Lee, P.D., Jones, J.R., Sutcliffe, C.J., Jones, E.: Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater. Sci. Eng. C 33(7), 4055–4062 (2013)

    Article  Google Scholar 

  49. Zhou, Q., Panetta, J., Zorin, D.: Worst-case structural analysis. ACM Trans. Graph. 32(4), 137:1–137:12 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Santander-University of Brighton Travel Grants for Staff which supported a research visit between the authors. We also acknowledge Trevor Taylor for his efforts and help on printing the proposed structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asla Medeiros e Sá.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros e Sá, A., Mello, V.M., Rodriguez Echavarria, K. et al. Adaptive voids. Vis Comput 31, 799–808 (2015). https://doi.org/10.1007/s00371-015-1109-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1109-8

Keywords

Navigation