Skip to main content
Log in

Modeling 3D synthetic view dissimilarity

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We model the dissimilarity among 3D synthetic views and measure the novelty of a view by its dissimilarity to other view(s). Two views are dissimilar if they have different viewing content or viewing orientations. The model evaluates the perceptual cost of mentally reconstructing one view from other view(s). Higher perceptual cost means more dissimilarity. Perceptual cost is related to reaction time of rotation and completion of human mental images. Visual comparisons among dissimilarity measures suggest that our model can better determine how dissimilar one view is to other view(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep/.

  2. http://graphics.cs.williams.edu/data.

References

  1. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)

    Article  Google Scholar 

  2. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28(3), 73:1–73:12 (2009)

    Article  Google Scholar 

  3. Chen, X., Saparov, A., Pang, B., Funkhouser, T.: Schelling points on 3D surface meshes. ACM Trans. Graph. 31(4), 29:1–29:12 (2012)

    Article  Google Scholar 

  4. Cheung, O.S., Hayward, W.G., Gauthier, I.: Dissociating the effects of angular disparity and image similarity in mental rotation and object recognition. Cognition 113(1), 128–133 (2009)

    Article  Google Scholar 

  5. Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 6(1), 1:1–1:23 (2009)

    Article  Google Scholar 

  6. Glover, F., Gutin, G., Yeo, A., Zverovich, A.: Construction heuristics for the asymmetric TSP. Eur. J. Oper. Res. 129(3), 555–568 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hlavác, V., Leonardis, A., Werner, T.: Automatic selection of reference views for image-based scene representations. In: Proceedings of the 4th European Conference on Computer Vision, ECCV ’96, pp. 526–535. Springer, Berlin (1996)

  8. Hoffman, D.D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997)

    Article  Google Scholar 

  9. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 29(4), 102:1–102:12 (2010)

    Article  Google Scholar 

  10. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  11. McMillan, L.: An image-based approach to three-dimensional computer graphics. Ph.D. thesis, University of North Carolina at Chapel Hill (1997)

  12. McMillan, L., Bishop, G.: Plenoptic modeling: an image-based rendering system. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp. 39–46 (1995)

  13. Parsons, T.D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J., Rizzo, A.A.: Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia 42(4), 555–562 (2004)

    Article  Google Scholar 

  14. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H.: Synthesizing realistic facial expressions from photographs. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 75–84 (1998)

  15. Ponto, K., Kohlmann, J., Gleicher, M.: Effective replays and summarization of virtual experiences. IEEE Trans. Vis. Comput. Graph. 18(4), 607–616 (2012)

    Article  Google Scholar 

  16. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shepard, R.N., Cooper, L.A.: Mental images and their transformations. MIT Press. http://philpapers.org/rec/SHEMIA (1982)

  18. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171(3972), 701–703 (1971)

    Article  Google Scholar 

  19. Shi, S., Jeon, W.J., Nahrstedt, K., Campbell, R.H.: Real-time remote rendering of 3D video for mobile devices. In: Proceedings of the 17th ACM International Conference on Multimedia, MM ’09, pp. 391–400 (2009)

  20. Shore, D.I., Enns, J.T.: Shape completion time depends on the size of the occluded region. J. Exp. Psychol. Hum. Percept. Perform. 23(4), 980–998 (1997)

    Article  Google Scholar 

  21. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the 5th International Conference on Computer Vision, ICCV ’95, pp. 902–907. IEEE Computer Society (1995)

  22. Thomas, N.J.: Mental imagery. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2014 edn. http://plato.stanford.edu/entries/mental-imagery/mental-rotation.html (2014)

  23. Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization Conference 2001, VMV ’01, pp. 273–280 (2001)

  24. Viola, I., Feixas, M., Sbert, M., Gröller, M.E.: Importance-driven focus of attention. IEEE Trans. Vis. Comput. Graph. 12(5), 933–940 (2006)

    Article  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Yuksel, C., Schaefer, S., Keyser, J.: Parameterization and applications of Catmull-Rom curves. Comput. Aided Des. 43(7), 747–755 (2011)

    Article  Google Scholar 

  27. Zhao, S., Ooi, W.T., Carlier, A., Morin, G., Charvillat, V.: 3D mesh preview streaming. In: Proceedings of the 4th ACM Multimedia Systems Conference, MMSys ’13, pp. 178–189 (2013)

  28. Zhao, S., Ooi, W.T., Carlier, A., Morin, G., Charvillat, V.: Bandwidth adaptation for 3D mesh preview streaming. ACM Trans. Multimed. Comput. Commun. Appl. 10(1s), 13:1–13:20 (2014)

    Google Scholar 

  29. Zhu, M., Mondet, S., Morin, G., Ooi, W.T., Cheng, W.: Towards peer-assisted rendering in networked virtual environments. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 183–192 (2011)

Download references

Acknowledgments

We thank the Stanford Computer Graphics Laboratory for making available the meshes: Asian Dragon, Thai Statue, Lucy. Both the Crytek Sponza and San Miguel scenes were downloaded from the Morgan McGuire’s Computer Graphics Archive. The Crytek Sponza scene was modeled by Frank Meinl at Crytek with inspiration from Marko Dabrovic’s original and the San Miguel scene was modeled by Guillermo M. Leal Llaguno of Evolución Visual.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanghong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Ooi, W.T. Modeling 3D synthetic view dissimilarity. Vis Comput 32, 429–443 (2016). https://doi.org/10.1007/s00371-015-1069-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1069-z

Keywords

Navigation