Skip to main content
Log in

Interactive partial 3D shape matching with geometric distance optimization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient method for partial 3D shape matching based on minimizing the geometric distance between the source and the target geometry. Unlike existing methods, our method does not use a feature-based distance in order to obtain a matching score. Instead, we use a fast, GPU-based method to approximate the true geometric distance between the source and the target by rendering the source object into a distance field which was built around the target. This function behaves smoothly in the space of transformations and allows for an efficient gradient-based local optimization. In order to overcome local minima, we use single point correspondences between surface points on the source and the target respectively employing simple, yet efficient local features based on the distribution of normal vectors around a reference point. The best correspondences define starting positions for a local optimization. The high efficiency of the distance computation allows for robust determination of the global minima in less than a second, which makes our method usable in interactive applications. Our method works for any kind of input data since it only requires point data with normal information at each point. We also demonstrate the capability of our algorithm to perform global alignment of similar 3D objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: Proceedings of ACM SIGGRAPH 2008 papers, SIGGRAPH ’08, pp. 85:1–85:10 (2008)

  2. Alt, H., Braß, P., Godau, M., Knauer, C., Wenk, C.: Computing the Hausdorff distance of geometric patterns and shapes. In: Proceedings of Discrete and Computational Geometry. The Goodman–Pollack Festschrift, Algorithms and Combinatorics, vol. 25, pp. 65–76 (2003)

  3. Attene, M., Marini, S., Spagnuol, M., Falcidieno, B.: Part-in-whole 3d shape matching and docking. Vis. Comput. 27, 991–1004 (2011)

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84, 163–183 (2009)

    Article  Google Scholar 

  6. Bronstein, E.M., Bronstein, M.M.: Regularized partial matching of rigid shapes. In: Proceedings of European Conference on Computer Vision, (ECCV), pp. 143–154 (2008)

  7. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 224–237 (2004)

  8. Funkhouser, T., Shilane, P.: Partial matching of 3d shapes with priority-driven search. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 131–142 (2006)

  9. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. In: Proceedings of ACM Transactions on Graphics, pp. 130–150 (2006)

  10. Johan, H., Li, B., Wei, Y., Iskandarsyah, Y.W.: 3d model alignment based on minimum projection area. Vis. Comput. 27(6–8), 565–574 (2011)

    Article  Google Scholar 

  11. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  12. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Gr. Forum 30(6), 1681–1707 (2011)

    Article  Google Scholar 

  13. Kazhdan, M.: An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1221–1229 (2007)

    Article  MathSciNet  Google Scholar 

  14. Linda, S.R.C., Shapiro, L.G., Meilă, M.: A new paradigm for recognizing 3-d object shapes from range data. In: Proceedings of the International Conference on Computer Vision, (ICCV), pp. 1126–1133 (2003)

  15. Liu, Y., Zha, H., Qin, H.: Shape topics: A compact representation and new algorithms for 3d partial shape retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2006 (2006)

  16. Low, K.L.: Linear least-squares optimization for point-to-plane icp surface registration. Technical report, TR-04-004. University of North Carolina (2004)

  17. Martinek, M., Grosso, R.: Optimal rotation alignment of 3d objects using a gpu-based similarity function. Comput. Gr. 33(3), 291–298 (2009)

    Article  Google Scholar 

  18. Martinek, M., Grosso, R., Greiner, G.: Fast and efficient 3d chamfer distance transform for polygonal meshes. In: Proceedings of Vision, Modeling, and Visualization (VMV), pp. 121–128. Eurographics Association, Berlin, Germany (2011)

  19. Martinek, M., Grosso, R., Greiner, G.: Optimized canonical coordinate frames for 3d object normalization. In: Proceedings of VMV 2012: Vision, Modeling and Visualization, pp. 167–174 (2012)

  20. Mitra, N.J., Gelfand, N., Pottmann, H., Guibas, L.: Registration of point cloud data from a geometric optimization perspective. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’04, pp. 22–31 (2004)

  21. Qiu, D., May, S., Nüchter, A.: Gpu-accelerated nearest neighbor search for 3d registration. In: Proceedings of the 7th International Conference on Computer Vision Systems: Computer Vision Systems, ICVS ’09, pp. 194–203. Springer, New York (2009)

  22. Schnabel, R., Wessel, R., Wahl, R., Klein, R.: Shape recognition in 3D point-clouds. In: Proceedings of the 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2008, pp. 65–72 (2008)

  23. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. In: Proceedings of Multimedia Tools and Applications, pp. 441–471 (2008)

  24. Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3d shape retrieval by reeb pattern unfolding. Comput. Gr. Forum 28, 41–55 (2009)

    Article  Google Scholar 

  25. Zabatani, A., Bronstein, A.M.: Parallelized algorithms for rigid surface alignment on gpu. In: Proceedings of the 5th Eurographics Conference on 3D Object Retrieval. EG 3DOR’12, pp. 17–23. Eurographics Association, Aire-la-Ville (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Martinek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinek, M., Grosso, R. & Greiner, G. Interactive partial 3D shape matching with geometric distance optimization. Vis Comput 31, 223–233 (2015). https://doi.org/10.1007/s00371-014-1040-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1040-4

Keywords

Navigation