Skip to main content
Log in

Elastic moduli of simple mass spring models

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Mass spring models (MSMs) are a popular choice for representation of soft bodies in computer graphics and virtual reality applications. In this paper, we investigate physical properties of the simplest MSMs composed of mass points and linear springs. The nodes are either placed on a cubic lattice or positioned randomly within the system. We calculate the elastic moduli for such models and relate the results to other studies. We show that there is a well-defined relationship between the geometric characteristics of the MSM systems and physical properties of the modeled materials. It is also demonstrated that these models exhibit a proper convergence to a unique solution upon mesh refinement and thus can represent elastic materials with a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Baudet, V.; Beuve, M.; Jaillet, F.; Shariat, B.; Zara, F.: Integrating tensile parameters in 3D mass-spring system. Technical Report RR-LIRIS-2007-004, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/École Centrale de Lyon, February (2007)

  2. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Taylor & Francis, Boca Raton (2009)

    Google Scholar 

  3. Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Trans. Vis. Comput. Gr. 14(2), 329–341 (2008)

    Article  Google Scholar 

  4. Hardy, R.J.: Formulas for determining local properties in molecular-dynamics simulations—shock waves. J. Chem. Phys. 76, 622–628 (1982)

    Article  Google Scholar 

  5. Kot, M., Nagahashi, H., Szymczak, P.: Verification of physical properties of materials modeled with mass-spring systems. Technical report of IEICE. Multimed. Virtual Environ. 110(457), 201–206 (2011)

    Google Scholar 

  6. Ladd, A.J.C., Kinney, J.H.: Elastic constants of cellular structures. Phys A Stat. Theor. Phys 240(1–2), 349–360 (1997)

    Article  Google Scholar 

  7. Lakes, R.S.: Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)

  8. Landau, L.D., Lifshitz, E.M.: Theory of elasticity. Pergamon, London (1959)

    Google Scholar 

  9. Levine JA, Bargteil AW, Corsi C, Tessendorf J, Geist R (2014) A peridynamic perspective on spring-mass fracture. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation

  10. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. ACM Trans. Gr. 32(6):209:1–7, Proceedings of ACM SIGGRAPH Asia 2013, Hong Kong. (2013)

  11. Lloyd, B.A., Szekely, G.: Harders M (2007) Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comput. Gr. 13(5), 1081–1094 (2007)

    Article  Google Scholar 

  12. Love AEH (1906) A treatise on the mathematical theory of elasticity. Cambridge University Press

  13. Meier, U., López, O., Monserrat, C., Juan, M.C., Alcañiz, M.: Real-time deformable models for surgery simulation: a survey. Comput. Methods Prog. Biomed. 77(3), 183–197 (2005)

    Article  Google Scholar 

  14. Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M., Ageia, N.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006)

    Article  Google Scholar 

  15. Ostoja-Starzewski, M.: Lattice models in micromechanics. Applied Mechanics Reviews 55(1), 35–60 (2002)

    Article  MathSciNet  Google Scholar 

  16. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

  17. San-Vicente, G., Aguinaga, I., Celigueta, J.T.: Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans. Vis. Comput. Gr. 18(2), 228–241 (2012)

    Article  Google Scholar 

  18. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  19. Van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3(2), 21–42 (1998)

    Article  Google Scholar 

  20. Zimmerman, J.A., WebbIII, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., Bammann, D.J.: Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 12(4), S319 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

M.K. and H.N. acknowledge the support of JSPS KAKENHI (Grant Number 24300035). P.S. acknowledges the support of the National Science Centre (Poland) under research Grant No. 2012/07/E/ST3/01734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Kot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kot, M., Nagahashi, H. & Szymczak, P. Elastic moduli of simple mass spring models. Vis Comput 31, 1339–1350 (2015). https://doi.org/10.1007/s00371-014-1015-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1015-5

Keywords

Navigation