Skip to main content
Log in

A novel multi-image super-resolution reconstruction method using anisotropic fractional order adaptive norm

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A high-resolution image is obtained by fusing the information derived from blurred, sub-pixel shifted, and noisy low-resolution observations. In this paper, a novel regularization model based on an Anisotropic Fractional Order Adaptive (AFOA) norm is proposed and then we apply the AFOA model into the Super-Resolution Reconstruction technology. Compared with the existing models, the proposed AFOA model can remove the noise and protect the edges adaptively according to the local features of the images. Meanwhile, the proposed AFOA model can avoid the staircase effect effectively in the smooth region. To obtain the solution to the proposed AFOA model, the Gradient Descent Method is used in this paper. Finally, the experimental results show that the proposed method has much improvement than the existing methods in the respect of the Peak Signal-to-Noise Ratio and the visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu, N., Ali, M.D., Picheral, J.: Robust Bayesian super-resolution approach via sparsity enforcing a prior for near-field aeroacoustic source image. J. Sound Vib. 332(18), 4369–4389 (2013)

    Article  Google Scholar 

  2. Wang, L.F., Xiang, S.M., Meng, G.F., Wu, H.Y., Pan, C.H.: Edge-directed single-image super resolution via adaptive gradient magnitude self-interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(8), 1289–1299 (2013)

    Article  Google Scholar 

  3. Tian, Y.H., Yap, K., He, Y.: Vehicle license plate super-resolution using soft learning prior. Multimed. Tools Appl. 60(3), 519–535 (2012)

    Article  Google Scholar 

  4. Akyol, A., Gokmen, M.: Super-resolution reconstruction of faces by enhanced global models of shape and texture. Pattern recognit. 45(12), 4103–4116 (2012)

    Article  Google Scholar 

  5. Kanaev, A.V., Miller, C.W.: Multi-frame super-resolution algorithm for complex motion patterns. Opt. Express 21(17), 19850–19866 (2013)

    Article  Google Scholar 

  6. Vrigkas, M., Nikou, C., Kondi, L.P.: Accurate image registration for MAP image super-resolution. Signal Process. Image Commun. 28(5), 494–508 (2013)

    Article  Google Scholar 

  7. Izadpanahi, S., Demirel, H.: Motion based video super resolution using edge directed interpolation and complex wavelet transform. Signal Process. 93(7), 2076–2086 (2013)

    Article  Google Scholar 

  8. Tian, Y.S., Yap, K.H.: Joint image registration and super-resolution from low resolution images with zooming motion. IEEE Trans. Circuits Syst. Video Technol. 23(7), 1224–1234 (2013)

    Article  Google Scholar 

  9. Ma, W., Bai, Z.J.: A regularized directional derivative-based Newton method for inverse singular value problems. Inverse Probl. 28(12), 125001(24 pp) (2012)

  10. Lucka, F.: Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors. Inverse Probl. 28(12), 125012(31 pp) (2012)

  11. Cimrak, I., Melicher, V.: Mixed Tikhonov regularization in Banach spaces based on domain decomposition. Appl. Math. Comput. 218(23), 11583–11596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ren, Z.M., He, C.J., Zhang, Q.F.: Fractional order total variation regularization for image super-resolution. Signal Process. 93(9), 2408–2421 (2013)

    Article  Google Scholar 

  13. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational Bayesian super resolution. IEEE Trans. Image Process. 20(4), 984–999 (2011)

  14. Esedoglu, S., Osher, S.J.: Decomposition of images by the anisotropic Rudin–Osher–Fatemi model. Commun. Pure Appl. Math 57(12), 1609–1626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super-resolution. IEEE Trans. Image Process. 3(10), 1327–1344 (2004)

    Article  Google Scholar 

  16. Li, X.L., Hu, Y.T., Gao, X.B., Tao, D.C., Ning, B.J.: A multi-frame image super-resolution method. Signal Process. 90(2), 405–414 (2010)

    Article  MATH  Google Scholar 

  17. Shao, W.Z.: Image Modeling Based Regularized Multi-Frame Super-Resolution Reconstruction. Ph.D Thesis, Nanjing University of Technology and Engineering, Nanjing (2008)

  18. Ng, M.K., Shen, H.F., Lam, E.Y., Zhang, L.P.: A total variation regularization based super-resolution reconstruction algorithm for digital video. Eurasip. J. Adv. Signal Process. (2007). doi:10.1155/2007/74585

  19. Xu, Z.G., Su, X.Q., Zhang, Z.P.: Multi-frame image super-resolution by total-variation regularization. J. Inf. Comput. Sci. 9(4), 945–953 (2012)

    Google Scholar 

  20. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. Int. J. Comput. Vis. 76(2), 123–139 (2008)

    Article  Google Scholar 

  22. Tang, S., Gong, W.G., Li, W.H., Wang, W.Z.: Non-blind image deblurring method by local and nonlocal total variation models. Signal Process. 94, 339–349 (2014)

    Article  Google Scholar 

  23. Yuan, Q.Q., Zhang, L.P., Shen, H.F.: Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering. IEEE Trans. Image Process. 22(6), 2324–2342 (2013)

  24. Krommweh, J., Ma, J.W.: Tetrolet shrinkage with anisotropic total variation minimization for image approximation. Signal Process. 90(8), 2529–2539 (2010)

    Article  MATH  Google Scholar 

  25. Wang, L.Q., Xiao, L., Zhang, J., Wei, Z.H.: New image restoration method associated with tetrolets shrinkage and weighted anisotropic total variation. Signal Process. 93(4), 661–670 (2013)

    Article  Google Scholar 

  26. Hamidi, A.E., Menard, M., Lugiez, M., Ghannam, C.: Weighted and extended total variation for image restoration and decomposition. Pattern Recognit. 43(4), 1564–1576 (2010)

    Article  MATH  Google Scholar 

  27. Birkholz, H.: A unifying approach to isotropic and anisotropic total variation denoising models. J. Comput. Appl. Math. 235(8), 2502–2514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Villena, S., Vege, M., Babacan, S.D., Molina, R., Katsaggelos, A.K.: Bayesian combination of sparse and non-sparse priors in image super-resolution. Digit. Signal Process. 23(2), 530–541 (2013)

    Article  MathSciNet  Google Scholar 

  29. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259C268 (1992)

  30. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Process. 5, 987C995 (1996)

  31. Villena, S., Vega, M., Molina, R., Katsaggelos, A.K.: Bayesian super-resolution image reconstruction using an l1 prior. In: Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, 16–18 September 2009, pp. 152–157 (2009)

  32. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol. 2, Vancouver, pp. 674–679 (1981)

  33. Battiti, R., Amaldi, E., Koch, C.: Computing optical flow across multiple scales: an adaptive coarse-to-fine strategy. Int. J. Comput. Vis. 6(2), 133–145 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the anonymous reviewers for their constructive suggestions which helped us in improving our manuscript. This work is partly supported by Ph.D. Programs Foundation of Ministry of Education of China (No. 20120142120110) and partly supported by Graduates’ Innovation Fund of Huazhong University of Science and Technology (No. HF-11-06-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liang, H., Zhao, S. et al. A novel multi-image super-resolution reconstruction method using anisotropic fractional order adaptive norm. Vis Comput 31, 1217–1231 (2015). https://doi.org/10.1007/s00371-014-1007-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1007-5

Keywords

Navigation