Skip to main content
Log in

Skeleton-driven surface deformation through lattices for real-time character animation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, an efficient deformation framework is presented for skeleton-driven polygonal characters. Standard solutions, such as linear blend skinning, focus on primary deformations and require intensive user adjustment. We propose constructing a lattice of cubic cells embracing the input surface mesh. Based on the lattice, our system automatically propagates smooth skinning weights from bones to drive the surface primary deformation, and it rectifies the over-compressed regions by volume preservation. The secondary deformation is, in the meanwhile, generated by the lattice shape matching with dynamic particles. The proposed framework can generate both low- and high-frequency surface motions such as muscle deformation and vibrations with few user interventions. Our results demonstrate that the proposed lattice-based method is liable to GPU computation, and it is adequate to real-time character animation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72 (2007)

    Article  Google Scholar 

  2. Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007)

    Article  Google Scholar 

  3. Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.: Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21(3), 586–593 (2002)

    Article  Google Scholar 

  4. Cordier, F., Magnenat-Thalmann, N.: A data-driven approach for real-time clothes simulation. In: Proc. Pacific Graphics, pp. 257–266 (2004)

    Google Scholar 

  5. Faloutsos, P., van de Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE Trans. Vis. Comput. Graph. 3(3), 201–214 (1997)

    Article  Google Scholar 

  6. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., McDougall, R.: Deformation styles for spline-based skeletal animation. In: Proc. ACM SIGGRAPH/ Eurographics Symp. on Computer Animation, pp. 141–150 (2007)

    Google Scholar 

  7. James, D.L., Barbič, J., Twigg, C.D.: Squashing cubes: automating deformable model construction for graphics. In: Proc. ACM SIGGRAPH 2004 Conference, Sketches & Applications (2004)

    Google Scholar 

  8. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007)

    Article  Google Scholar 

  9. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article  Google Scholar 

  10. Ju, T., Zhou, Q., van de Panne, M., Cohen-Or, D., Neumann, U.: Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27(5), 122 (2008)

    Article  Google Scholar 

  11. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 105 (2008)

    Article  Google Scholar 

  12. Kim, B.-U., Feng, W.-W., Yu, Y.: Real-time data driven deformation with affine bones. Vis. Comput. 26(6–8), 487–495 (2010)

    Article  Google Scholar 

  13. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)

    Article  Google Scholar 

  14. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeletondriven deformation. In: Proc. ACM SIGGRAPH’00, pp. 165–172 (2000)

    Google Scholar 

  15. Li, J., Lu, G., Ye, J.: Automatic skinning and animation of skeletal models. Vis. Comput. 27(6–8), 585–594 (2011)

    Article  Google Scholar 

  16. Lin, I.-C., Peng, J.-Y., Lin, C.-C., Tsai, M.-H.: Adaptive motion data representation with repeated motion analysis. IEEE Trans. Vis. Comput. Graph. 17(4), 527–538 (2011)

    Article  Google Scholar 

  17. Magnenat-Thalmann, N., Laperrìere, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proc. Graphics Interface’88, pp. 26–33 (1988)

    Google Scholar 

  18. Müller, M., Dorsey, J., Mcmillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proc. ACM SIGGRAPH Symp. on Computer Animation, pp. 49–54 (2005)

    Google Scholar 

  19. Müller, M., Gross, M.: Interactive virtual materials. In: Proc. Graphics Interface’04, pp. 239–246 (2004)

    Google Scholar 

  20. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004)

    Article  Google Scholar 

  21. O’Brien, J.F., Zordan, V.B., Hodgins, J.K.: Combining active and passive simulations for secondary motion. IEEE Comput. Graph. Appl. 20(4), 86–96 (2000)

    Article  Google Scholar 

  22. Peng, J.-Y., Lin, I.-C., Chao, J.-S., Chen, Y.-J., Juang, G.-H.: Interactive and flexible motion transition. Comput. Animat. Virtual Worlds 18(4–5), 549–558 (2007)

    Article  Google Scholar 

  23. Rivers, A.R., James, D.L.: Fastlsm: fast lattice shape matching for robust realtime deformation. ACM Trans. Graph. 26(3), 82 (2007)

    Article  Google Scholar 

  24. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., Guo, B.: Example-based dynamic skinning in real time. ACM Trans. Graph. 27(3), 29 (2008)

    Article  Google Scholar 

  25. Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24(3), 417–425 (2005)

    Article  Google Scholar 

  26. Takamatsu, K., Kanai, T.: Volume-preserving lsm deformations. In: Proc. ACM SIGGRAPH ASIA’09 Sketches (2009), article: 15

    Google Scholar 

  27. von Funck, W., Theisel, H., Seidel, H.-P.: Elastic secondary deformations by vector field integration. In: Proc. Eurographics Symp. on Geometry Processing’07, pp. 99–108 (2007)

    Google Scholar 

  28. Wang, R.Y., Pulli, K., Popović, J.: Real-time enveloping with rotational regression. ACM Trans. Graph. 26(3), 55 (2007)

    Article  Google Scholar 

  29. Wang, Y.-S., Lee, T.-Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Vis. Comput. Graph. 14(4), 926–936 (2008)

    Article  MathSciNet  Google Scholar 

  30. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)

    Article  Google Scholar 

  31. CMU GraphicsLab: Motion Capture Database. http://mocap.cs.cmu.edu (2011). Accessed, Dec. 2011

  32. Lee, J., Kim, M.-S., Yoon, S.-H.: Patches: character skinning with local deformation layer. Comput. Animat. Virtual Worlds 20(2–3), 321–331 (2009)

    Article  Google Scholar 

  33. Hyun, D.-E., Yoon, S.-H., Chang, J.-W., Seong, J.-K., Kim, M.-S., Jüttler, B.: Sweep-based human deformation. Vis. Comput. 21(8–10), 542–550 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Chen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CH., Tsai, MH., Lin, IC. et al. Skeleton-driven surface deformation through lattices for real-time character animation. Vis Comput 29, 241–251 (2013). https://doi.org/10.1007/s00371-012-0759-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0759-z

Keywords

Navigation