Skip to main content
Log in

Realistically rendering polluted water

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Polluted water is very common in our world. Vividly rendering polluted water can bring people real, different, and fancy feelings. Especially in under water imagery, taking polluted water into consideration will produce more plausible results. Polluted water consists of many kinds of pollutants, which interact with light differently and make water look turbid. The optical properties of polluted water change with the concentrations of pollutants significantly. In this paper, we provide a method to obtain the optical properties of polluted water, which makes a bio-optical model for polluted water and connects the optical parameters with water quality data, i.e., the concentrations of pollutants. Our method can estimate the optical properties of polluted water regardless of the kinds and the concentrations of pollutants in water. Polluted water is inhomogeneous and has multiple scattering effects. We use volumetric photon mapping to render it and provide a 3D weight-varying radiance estimate method for the photon mapping. This radiance estimate method can compute high-frequency effects easily, which can show more details of the pollution process. Experiments demonstrate that our approach can generate polluted water effects unachievable by standard rendering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iglesias, A.: Computer graphics for water modeling and rendering: a survey. Future Gener. Comput. Syst. 20(8), 1355–1374 (2004)

    Article  Google Scholar 

  2. Gutierrez, D., Seron, F., Anson, O., Munoz, A.: Visualizing underwater ocean optics. Comput. Graph. Forum 27(2), 547–556 (2008)

    Article  Google Scholar 

  3. Kaneda, K., Yuan, G., Tomoda, Y., Baba, M., Nakamae, E., Nishita, T.: Realistic visual simulation of water surfaces taking into account radiative transfer. In: Proceedings of CAD/Graphics 1991, pp. 25–30. International Academic Publishers, Hangzhou (1991)

    Google Scholar 

  4. Iwasaki, K., Dobashi, Y., Nishita, T.: Efficient rendering of optical effects within water using graphics hardware. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, pp. 374–383. IEEE Computer Society, Washington (2001)

    Chapter  Google Scholar 

  5. Premoze, S., Ashikmin, M.: Rendering natural waters. Comput. Graph. Forum 20(4), 189–200 (2001)

    Article  MATH  Google Scholar 

  6. Cerezo, E., Serón, F.J.: Rendering natural waters: merging computer graphics with physics and biology. In: Proceedings of the Computer Graphics International 2002, pp. 481–498. Springer, New York (2002)

    Google Scholar 

  7. Jensen, H.W.: Global illumination using photon maps. In: Proceedings of the Eurographics Workshop on Rendering Techniques’96, pp. 21–30. Springer, London (1996)

    Google Scholar 

  8. Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in sciences with participating media using photon maps. In: SIGGRAPH’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–320. ACM, New York (1998)

    Chapter  Google Scholar 

  9. Jensen, H.W.: The photon map in global illumination. Ph.D. thesis, Technical University of Denmark, Lyngby (1996)

  10. Jensen, H.W., Christensen, N.J.: A practical guide to global illumination using photon mapping. In: SIGGRAPH 2000: Course Notes, vol. 8 (2000)

    Google Scholar 

  11. Pharr, M.: Extended photon map implementation. http://www.pbrt.org/plugins/exphotonmap.pdf, 2010

  12. Schjøth, L., Olsen, O.F., Sporring, J.: Diffusion based photon mapping. In: Proceedings of the First International Conference on Computer Graphics Theory and Applications (GRAPP 2006), pp. 109–122. Springer, Berlin (2007)

    Google Scholar 

  13. Jarosz, W., Zwicker, M., Jensen, H.W.: The beam radiance estimate for volumetric photon mapping. Comput. Graph. Forum 27(2), 557–566 (2008)

    Article  Google Scholar 

  14. Jakob, W., Regg, C., Jarosz, W.: Progressive expectation-maximization for hierarchical volumetric photon mapping. Comput. Graph. Forum 30(4), 1287–1297 (2011)

    Article  Google Scholar 

  15. Robin, M.P., Edward, S.F.: Absorption spectrum of pure water (380–700 nm). II. Integrating cavity measurements. Appl. Opt. 36(33), 8710–8723 (1997)

    Article  Google Scholar 

  16. Smith, R.C., Baker, K.S.: Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20(2), 177–184 (1981)

    Article  Google Scholar 

  17. Ferrari, G.M.: The relationship between chromophoric dissolved organic matter and dissolved organic carbon in the European Atlantic coastal area and in the West Mediterranean Sea (Gulf of Lions). Mar. Chem. 70, 339–357 (2000)

    Article  Google Scholar 

  18. Zhang, Y.L., Qin, B.Q., Zhu, G.W., Zhang, L., Yang, L.Y.: Chromophoric dissolved organic matter (CDOM) absorption characteristics with relation to fluorescence in lake Taihu, a large shallow subtropical lake. Hydrobiologia 581, 43–52 (2007)

    Article  Google Scholar 

  19. Sun, D.Y., Wang, Q., Le, C.F., Huang, C.C., Wang, L.Z.: Simulation of spectral absorption characteristics of suspended sediment water. Geogr. Geo-Inf. Sci. 24(5), 16–20 (2008)

    Google Scholar 

  20. Le, C.F., Li, Y.M., Zha, Y., Sun, D.Y., Lu, H.: Simulation of backscattering properties of Taihu lake. Adv. Water Sci. 20(5), 707–713 (2009)

    Google Scholar 

  21. Gordon, H.R.: Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile[j]. Appl. Opt. 31(12), 2116–2129 (1992)

    Article  Google Scholar 

  22. Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semiparametric Models. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’03), pp. 154–159. Eurographics Association, Geneva (2003)

    Google Scholar 

  24. Fournier, A., Reeves, W., William, T.: A simple model of ocean waves. SIGGRAPH Comput. Graph. 20(4), 75–84 (1986)

    Article  Google Scholar 

  25. Tessendorf, J.: Simulating ocean water. In: Simulating Nature: Realistic and Interactive Techniques. SIGGRAPH 2001 Course Notes, vol. 47 (2001)

    Google Scholar 

  26. Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. SIGGRAPH Comput. Graph. 24(4), 49–57 (1990)

    Article  Google Scholar 

  27. O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of splashing fluids. In: Proceedings of Computer Animation 1995, pp. 198–205. IEEE Computer Society, Washington (1995)

    Chapter  Google Scholar 

  28. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58(5), 471–483 (1996)

    Article  Google Scholar 

  29. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)

    Article  Google Scholar 

  30. Duan, H.T., Ma, R.H., Kong, W.J., Hao, J.Y., Zhang, S.X.: Optical properties of chromophoric dissolved organic matter in lake Taihu. J. Lake Sci. 21(2), 242–247 (2009)

    Google Scholar 

  31. Ma, R.H., Tang, J.W., Duan, H.T., Pan, D.L.: Progress in lake water color remote sensing. J. Lake Sci. 21(2), 143–158 (2009)

    Google Scholar 

  32. Zhang, Y.L., Qin, B.Q.: Feature of CDOM and its possible source in Meiliang bay and Da Taihu lake in Taihu lake in summer and winter. Adv. Water Sci. 18(3), 415–423 (2007)

    MathSciNet  Google Scholar 

  33. Chen, J., Zhou, G.H., Wen, Z.H., Ma, J.F., Zhang, X., Peng, D.Q., Yang, S.L.: Study on quantitative model for suspended sediment concentration in Taihu lake. Spectrosc. Spectr. Anal. 30(1), 137–141 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported and funded by NSFC Grant No. 61173067, NSFC-Guangdong Joint Fund (U0935003) and National High-Tech Research and Development Plan of China under Grant No. 2012AA011501. We would like to thank the Key Lab of Mobile Computing and Pervasive Devices. And special thanks go to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Zhu, D., Zhang, Y. et al. Realistically rendering polluted water. Vis Comput 28, 647–656 (2012). https://doi.org/10.1007/s00371-012-0685-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0685-0

Keywords

Navigation