Skip to main content
Log in

3D model retrieval based on color + geometry signatures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Color plays a significant role in the recognition of 3D objects and scenes from the perspective of cognitive psychology. In this paper, we propose a new 3D model retrieval method, focusing on not only the geometric features but also the color features of 3D mesh models. Firstly, we propose a new sampling method that samples the models in the regions of either geometry-high-variation or color-high-variation. After collecting geometry + color sensitive sampling points, we cluster them into several classes by using a modified ISODATA algorithm. Then we calculate the feature histogram of each model in the database using these clustered sampling points. For model retrieval, we compare the histogram of an input model to the stored histograms in the database to find out the most similar models. To evaluate the retrieval method based on the new color + geometry signatures, we use the precision/recall performance metric to compare our method with several classical methods. Experiment results show that color information does help improve the accuracy of 3D model retrieval, which is consistent with the postulate in psychophysics that color should strongly influence the recognition of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Livingstone, M.D., Hubel, D.H.: Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci. 7, 3416–3468 (1987)

    Google Scholar 

  2. Gevers, T., Smeulders, A.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Trans. Image Process. 9(1), 102–119 (2000)

    Article  Google Scholar 

  3. Mel, B.W.: SEEMORE: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput. 9, 777–804 (1997)

    Article  Google Scholar 

  4. Slater, D., Healey, G.: Combining color and geometric information for the illumination invariant recognition of 3D objects. In: Proc. Fifth International Conference on Computer Vision (ICCV’95), pp. 563–568 (1995)

    Chapter  Google Scholar 

  5. Ankerst, M., Kastenmulle, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases, pp. 207–228 (1999)

    Google Scholar 

  6. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–105 (2003)

    Article  Google Scholar 

  7. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D models with shape distributions. In: Shape Modeling International, pp. 154–166 (2001)

    Google Scholar 

  8. Vranic, D., Saupe, D.: 3D shape descriptor based on 3D Fourier transform. In: Proc. ECMCS 2001, pp. 271–274 (2001)

    Google Scholar 

  9. Horn, B.K.P.: Extended Gaussian images. In: Proceedings of the IEEE, pp. 1671–1686 (1984)

    Google Scholar 

  10. Vranic, D.: An improvement of rotation invariant 3D shape descriptor based on functions on concentric spheres. In: IEEE International Conference on Image Processing (ICIP 2003), vol. 3, pp. 757–760 (2003)

    Google Scholar 

  11. Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex 3-D scenes. Image Vis. Comput. 16, 635–651 (1998)

    Article  Google Scholar 

  12. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  13. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: ACM SIGGRAPH’01, pp. 203–212 (2001)

    Google Scholar 

  14. Chen, D., Tian, X., Shen, Y., Ouhyoung, M.: On visual similarity based 3d model retrieval. Comput. Graph. Forum (Eurographic’03) 22(3), 223–232 (2003)

    Article  Google Scholar 

  15. Tanaka, J., Weiskopf, D., Williams, P.: The role of color in high-level vision. Trends Cogn. Sci. 5(5), 211–215 (2001)

    Article  Google Scholar 

  16. Marr, D.: Vision: A Computational Investigation into the Human Representation and Process of Visual Information. Freeman, San Francisco (1982)

    Google Scholar 

  17. Ullman, S.: High-level Vision: Object Recognition and Visual Cognition. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Cavanagh, P.: Reconstructing the third dimension: interactions between color, texture, motion, binocular disparity, and shape. Comput. Vis. Graph. Image Process. 37, 171–195 (1987)

    Article  Google Scholar 

  19. International Commission on Illumination: Recommendations on uniform color space, color-difference equations, psychometric color terms, Supplement No. 2 to CIE Publication No. 15 (E-1.3.1/(TC-1.3)) (1978)

  20. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proc. Fifth International Conference on Computer Vision (ICCV’95), pp. 902–907 (1995)

    Chapter  Google Scholar 

  21. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New York (1976)

    MATH  Google Scholar 

  22. Olshausen, B.A., Anderson, C., van Essen, D.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993)

    Google Scholar 

  23. Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63, 29–78 (1997)

    Article  Google Scholar 

  24. Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 224–270 (1994)

    Google Scholar 

  25. Desbrun, M., Meyer, M., Schroder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: ACM SIGGRAPH’99, pp. 317–324 (1999)

    Google Scholar 

  26. Lee, C.H., Varshney, A., Jacobs, D.: Mesh saliency. In: ACM SIGGRAPH’05, pp. 659–666 (2005)

    Google Scholar 

  27. Optical Society of America: Uniformly Spaced Color Samples. Washington, DC (1977)

  28. Billmeyer, F.W., Saltzman, M. Jr.: Principles of Color Technology, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  29. Conway, B.R.: Neural Mechanisms of Color Vision: Double-Opponent Cells in the Visual Cortex. Springer, Berlin (2002)

    Google Scholar 

  30. Bian, Z.Q., Zhang, W.G.: Pattern Recognition. Tsinghua University Press, Beijing (1999)

    Google Scholar 

  31. Lv, L.: 3D model retrieval based on invariants of hierarchical geometry transformations. Master Thesis, Department of Computer Science, Tsinghua University (2010)

  32. Elbaz, A.E., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003)

    Article  Google Scholar 

  33. Xu, D., Li, H.: Geometric moment invariants. Pattern Recognit. 41(1), 240–249 (2008)

    Article  MATH  Google Scholar 

  34. Liu, Y.J., Chen, Z.Q., Tang, K.: Construction of iso-contours, bisectors and Voronoi diagrams on triangulated surfaces. IEEE Trans. Pattern Anal. Mach. Intell. (2011). doi:10.1109/TPAMI.2010.221

    Google Scholar 

  35. McGill: 3D Shape Benchmark. http://www.cim.mcgill.ca/~shape/benchMark/ (2011)

  36. Mou, W., Xiao, C., McNamara, T.P.: Reference directions and reference objects in spatial memory of a briefly viewed layout. Cognition 108, 136–154 (2008)

    Article  Google Scholar 

  37. van Rijsbergen, C.: Information Retrieval, 2nd edn. Dept. of Computer Science, Univ. of Glasgow, Glasgow (1979)

    Google Scholar 

  38. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  39. Turlach, B.A.: Bandwidth selection in kernel density estimation: a review. Discussion Paper 9317, Institut de Statistique, UCL, Louvain La Neuve, 1993

  40. Jayanti, S., Iyer, N., Kalyanaraman, Y., Ramani, K.: Developing an engineering shape benchmark for cad models. Comput. Aided Des. 38(9), 939–53 (2006)

    Article  Google Scholar 

  41. Wang, J., He, Y., Tian, H., Cai, H.: Retrieving 3d cad model by free-hand sketches for design reuse. Adv. Eng. Inform., 22(3), 385–392 (2008)

    Article  Google Scholar 

  42. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YJ., Zheng, YF., Lv, L. et al. 3D model retrieval based on color + geometry signatures. Vis Comput 28, 75–86 (2012). https://doi.org/10.1007/s00371-011-0605-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0605-8

Keywords

Navigation