Skip to main content
Log in

Interchangeable SPH and level set method in multiphase fluids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Subgrid-scale fluid is difficult to represent realistically in a grid-based fluid simulation. We show how to describe such small-scale details effectively, even on a coarse grid, by using escaped particles. The simulation of these particles with SPH (smooth particle hydrodynamics) allows the illustration of dynamic and realistic animation of fluids. Particles modeled by SPH have a force which leads them to merge if they are within a certain range. This reduces the accuracy of a simulation. Consequently, aggregated particles which form volumes large enough to be described by the level set method will be simulated inefficiently by particles. We address this problem with a new method in which details too small for the grid are represented by particles, while the level set method with a grid is used to describe merged particles on the grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 481–487 (2007)

    Google Scholar 

  2. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proc. of 2007 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 1–8 (2007)

  3. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–16 (1967)

    Article  MATH  Google Scholar 

  4. Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 26(3), 971–976 (2007)

    Google Scholar 

  5. Desbrun, M., Cani, M.-P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: 6th Eurographics Workshop on Computer Animation and Simulation, pp. 61–76 (1996)

  6. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21(3), 736–744 (2002)

    Google Scholar 

  7. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. of ACM SIGGRAPH 2001, pp. 23–30 (2001)

  8. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58, 471–483 (1996)

    Article  Google Scholar 

  9. Greenwood, S.T., House, D.H.: Better with bubbles: Enhancing the visual realism of simulated fluid. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 287–296 (2004)

  10. Hong, J.-M., Kim, C.-H.: Animation of bubbles in liquid. Comput. Graph. Forum (Eurograph. Proc.) 22(3), 253–262 (2003)

    Article  MathSciNet  Google Scholar 

  11. Hong, J.-M., Kim, C.-H.: Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24(3), 915–920 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. ACM Trans. Graph. (SIGGRAPH Proc.) 48, 1–4 (2008)

    Article  Google Scholar 

  13. Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 335–344 (2006)

  14. Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Flowfixer: Using bfecc for fluid simulation. In: Eurographics Workshop on Natural Phenomena 1, p. 2 (2005)

  15. Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462 (2004)

    Article  Google Scholar 

  16. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  17. Müller, M.:, Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)

  18. Magnaudet, J., Eames, I.: The motion of high Reynolds number bubbles in inhomogeneous flow. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

    Article  MathSciNet  Google Scholar 

  19. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pp. 237–244 (2005)

  20. Stam, J.: Stable fluids. In: In Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)

  21. Song, O., Shin, H., Ko, H.-S.: Stable but nondissipative water. ACM Trans. Graph. 24(1), 81–97 (2005)

    Article  Google Scholar 

  22. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. In: EUROGRAPHICS, vol. 22 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hun Kim.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HY., Hong, JM. & Kim, CH. Interchangeable SPH and level set method in multiphase fluids. Vis Comput 25, 713–718 (2009). https://doi.org/10.1007/s00371-009-0339-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0339-z

Keywords

Navigation