Skip to main content

Advertisement

Log in

Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Hydroacoustic surveys are common tools for habitat investigation and monitoring that aid in the realisation of the aims of the EU Marine Directives. However, the creation of habitat maps is difficult, especially when benthic organisms densely populate the seafloor. This study assesses the sensitivity of entropy and homogeneity image texture parameters derived from backscatter strength data to benthic habitats dominated by the tubeworm Lanice conchilega. Side scan sonar backscatter surveys were carried out in 2010 and 2011 in the German Bight (southern North Sea) at two sites approx. 20 km offshore of the island of Sylt. Abiotic and biotic seabed facies, such as sorted bedforms, areas of fine to medium sand and L. conchilega beds with different tube densities, were identified and characterised based on manual expert analysis and image texture analysis. Ground truthing was performed by grab sampling and underwater video observations. Compared to the manual expert analysis, the k-means classification of image textures proves to be a semi-automated method to investigate small-scale differences in a biologically altered seabed from backscatter data. The texture parameters entropy and homogeneity appear linearly interrelated with tube density, the former positively and the latter negatively. Reinvestigation of one site after 1 year showed an extensive change in the distribution of the L. conchilega-altered seabed. Such marked annual fluctuations in L. conchilega tube cover demonstrate the need for dense time series and high spatial coverage to meaningfully monitor ecological patterns on the seafloor with acoustic backscatter methods in the study region and similar settings worldwide, particularly because the sand mason plays a pivotal role in promoting biodiversity. In this context, image texture analysis provides a cost-effective and reproducible method to track biologically altered seabeds from side scan sonar backscatter signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Beeken A, Neumann T (2008) Five years of offshore measurements at the FINO1 platform in the German Bight. Wilhelmshaven DEWI Mag 33:6–11

    Google Scholar 

  • Bell JM, Chantler MJ, Wittig T (1999) Sidescan sonar: a directional filter of seabed texture? IEE Proc Radar Sonar Navigation, no 146

  • Blondel P (2009) The Handbook of Side Scan Sonar. Springer, Berlin. doi:10.1007/978-3-540-49886-5

    Book  Google Scholar 

  • Blondel P, Gómez Sichi O (2009) Textural analyses of multibeam sonar imagery from Stanton Banks, Northern Ireland continental shelf. Appl Acoust 70:1288–1297. doi:10.1016/j.apacoust.2008.07.015

    Article  Google Scholar 

  • Braeckman U, Rabaut M, Vanaverbeke J, Degraer S, Vincx M (2014) Protecting the Commons: the use of subtidal ecosystem engineers in marine management. Aquat Conserv Mar Freshwat Ecosyst 24:275–286. doi:10.1002/aqc.2448

    Article  Google Scholar 

  • Bressert E (2012) Scipy and Numpy: an overview for developers. O’Reilly Media

  • Briggs KB, Williams KL, Jackson DR, Jones CD, Ivakin AN, Orsi TH (2002) Fine-scale sedimentary structure: implications for acoustic remote sensing. Mar Geol 182:141–159. doi:10.1016/S0025-3227(01)00232-8

    Article  Google Scholar 

  • Brown CJ, Smith SJ, Lawton P (2011) Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar Coast Shelf Sci 92:502–520. doi:10.1016/j.ecss.2011.02.007

    Article  Google Scholar 

  • Brown CJ, Sameoto JA, Smith SJ (2012) Multiple methods, maps, and management applications: purpose made seafloor maps in support of ocean management. J Sea Res 72:1–13. doi:10.1016/j.seares.2012.04.009

    Article  Google Scholar 

  • BSH (2016) Bathymetric dataset. https://www.geoseaportal.de/gdi-bsh-portal/ui (last accessed 01.04.2016)

  • Callaway R (2003) Juveniles stick to adults: recruitment of the tube-dwelling polychaete Lanice conchilega (Pallas, 1766). Hydrobiologia 503:121–130. doi:10.1023/B:HYDR.0000008494.20908.87

    Article  Google Scholar 

  • Carey DA (1987) Sedimentological effects and palaeoecological implications of the tube-building polychaete Lanice conchilega Pallas. Sedimentology 34:49–66. doi:10.1111/j.1365-3091.1987.tb00559.x

    Article  Google Scholar 

  • Chantler MJ (1995) Why illuminant direction is fundamental to texture analysis. IEE Proc Vis Image Sig Proces 142(4):199–206. doi:10.1049/ip-vis:19952065

  • Cogan CB, Todd BJ, Lawton P, Noji TT (2009) The role of marine habitat mapping in ecosystem-based management. ICES J Mar Sci 66:2033–2042

    Article  Google Scholar 

  • Collier JS, Brown CJ (2005) Correlation of side scan backscatter with grain size distribution of surficial seabed sediments. Mar Geol 214:431–449. doi:10.1016/j.margeo.2004.11.011

    Article  Google Scholar 

  • Costello MJ (2009) Distinguishing marine habitat classification concepts for ecological data management. Mar Ecol Prog Ser 397:253–268. doi:10.3354/meps08317

    Article  Google Scholar 

  • De Smet B, D’Hondt A-S, Verhelst P, Fournier J, Godet L, Desroy N, Rabaut M, Vincx M, Vanaverbeke J (2015) Biogenic reefs affect multiple components of intertidal soft-bottom benthic assemblages: the Lanice conchilega case study. Estuar Coast Shelf Sci 152:44–55. doi:10.1016/j.ecss.2014.11.002

    Article  Google Scholar 

  • Degraer S, Moerkerke G, Rabaut M, van Hoey G, Du Four I, Vincx M, Henriet J-P, van Lancker V (2008) Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote Sens Environ 112:3323–3328. doi:10.1016/j.rse.2007.12.012

    Article  Google Scholar 

  • Diesing M, Kubicki A, Winter C, Schwarzer K (2006) Decadal scale stability of sorted bedforms, German Bight, southeastern North Sea. Cont Shelf Res 26:902–916. doi:10.1016/j.csr.2006.02.009

    Article  Google Scholar 

  • Eckman JE (1983) Hydrodynamic processes affecting benthic recruitment. Limnol Oceanogr 28:241–257

    Article  Google Scholar 

  • Figge K (1981) Karte zur Sedimentverteilung in der Deutschen Bucht im Maßstab 1:250000. Deutsches Hydrographisches Institut, no 2900

  • Folk RL (1954) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62:344–359

    Article  Google Scholar 

  • Gebejes A, Huertas R (2013) Texture characterization based on grey-level co-occurrence matrix. ICTIC, Proc Informatics and Management Sciences conf, vol 2, March 2013

  • Godet L, Toupoint N, Olivier F, Fournier J, Retière C (2008) Considering the functional value of common marine species as a conservation stake: the case of sandmason worm Lanice conchilega (Pallas 1766) (Annelida, Polychaeta) beds. Ambio 37(5):347–355. doi:10.1579/07-A-317.1

    Article  Google Scholar 

  • Goff JA, Olson H, Duncan C (2000) Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Mar Lett 20:43–49. doi:10.1007/s003670000032

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. doi:10.1126/science.1149345

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621

    Article  Google Scholar 

  • Heuers J, Jaklin S (1999) Initial settlement of Lanice conchilega. Senckenberg Marit 29:67–69. doi:10.1007/BF03043124

    Article  Google Scholar 

  • Heyer H, Schrottke K (2013) Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht - AufMod. Gemeinsamer Abschlussbericht für das Gesamtprojekt mit Beiträgen aus allen 7 Teilprojekten. http://vzb.baw.de/publikationen/kfki_projekte/0/105_2_1_e36075.pdf

  • Huvenne V, Hühnerbach V, Blondel P, Le Bas T (2007) Detailed mapping of shallow-water environments using image texture analysis on sidescan sonar and multibeam backscatter imagery. In: Underwater Acoustic Measurements 2007, 1 June 2007, Heraklion, Crete

  • ICES (2007) Acoustic seabed classification of marine physical and biological landscapes. ICES Cooperative Research Report, no 286

  • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31:651–666. doi:10.1016/j.patrec.2009.09.011

    Article  Google Scholar 

  • Jones SE, Jago CF (1993) In situ assessment of modification of sediment properties by burrowing invertebrates. Mar Biol 115:133–142. doi:10.1007/BF00349395

    Article  Google Scholar 

  • Jones E, Oliphant E, Peterson P and others (2001) SciPy: Open Source Scientific Tools for Python. http://www.scipy.org/ (last accessed 26.11.2015)

  • Karoui I, Fablet R, Boucher J-M, Augustin J-M (2009) Seabed segmentation using optimized statistics of sonar textures. IEEE Trans Geosci Remote Sens 47:1621–1631

    Article  Google Scholar 

  • Kenny AJ, Cato I, Desprez M, Fader G, Schuttenhelm RTE, Side J (2003) An overview of seabed mapping technologies in the context of marine habitat classification. ICES J Mar Sci 60:411–418

    Article  Google Scholar 

  • Köster R (1974) Geologie des Seegrundes vor den Nordfriesischen Inseln Sylt und Amrum. Meyniana 24:27–41

    Google Scholar 

  • Kostylev VE (2012) Benthic habitat mapping from seabed acoustic surveys: do implicit assumptions hold? In: Li MZ, Sherwood CR, Hill PR (eds) Sediments, morphology and sedimentary processes on continental shelves: Advances in technologies, research, and applications. Wiley, Chichester, pp 405–416. doi:10.1002/9781118311172.ch20

    Google Scholar 

  • Kostylev VE, Todd BJ, Fader GBJ, Courtney RC, Cameron GDM, Pickrill RA (2001) Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar Ecol Prog Ser 219:121–137

    Article  Google Scholar 

  • Lamarche G, Oprin AR, Mitchell JS, Palletin A (2016) Benthic habitat mapping. In: Clark MR, Consalvey M, Rowden AA (eds) Biological sampling in the deep sea. Wiley, Chichester. doi:10.1002/9781118332535.ch5

    Google Scholar 

  • Loewe P (2009) System Nordsee, Zustand 2005 im Kontext langzeitlicher Entwicklungen. Berichte des BSH 44, Bundesamt für Seeschifffahrt und Hydrographie, Hamburg, Rostock

  • Loewe P, Klein H, Weigelt-Krenz S (eds) (2013) System Nordsee - 2006 & 2007: Zustand und Entwicklungen. Berichte des BSH 49, Bundesamt für Seeschifffahrt und Hydrographie, Hamburg, Rostock

  • Markert E, Holler P, Kröncke I, Bartholomä A (2013) Benthic habitat mapping of sorted bedforms using hydroacoustic and ground-truthing methods in a coastal area of the German Bight/North Sea. Estuar Coast Shelf Sci 129:94–104. doi:10.1016/j.ecss.2013.05.027

    Article  Google Scholar 

  • McGonigle C, Collier JS (2014) Interlinking backscatter, grain size and benthic community structure. Estuar Coast Shelf Sci 147:123–136. doi:10.1016/j.ecss.2014.05.025

    Article  Google Scholar 

  • Micallef A, Le Bas TP, Huvenne VAI, Blondel P, Hühnerbach V, Deidun A (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 39–40:14–26. doi:10.1016/j.csr.2012.03.008

    Article  Google Scholar 

  • Mielck F, Holler P, Bürk D, Hass HC (2015) Interannual variability of sorted bedforms in the coastal German Bight (SE North Sea). Cont Shelf Res 111(A):31–41. doi:10.1016/j.csr.2015.10.016

    Article  Google Scholar 

  • MSFD (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). OJ L 164, 25.6.2008:19–40

  • Nowell ARM, Jumars PA, Eckman JE (1981) Effects of biological activity on the entrainment of marine sediments. Mar Geol 42:133–153

    Article  Google Scholar 

  • Pouliquen E, Lyons AP (2002) Backscatter from bioturbated sediments at very high frequency. IEEE J Ocean Eng 27:388–402. doi:10.1109/JOE.2002.1040926

    Article  Google Scholar 

  • Rabaut M, Guilini K, Van Hoey G, Vincx M (2007) A bio-engineered soft-bottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuar Coast Shelf Sci 75:525–536. doi:10.1016/j.ecss.2007.05.041

    Article  Google Scholar 

  • Rabaut M, Vincx M, Degraer S (2008) Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects. Helgol Mar Res 63:37–46. doi:10.1007/s10152-008-0137-4

    Article  Google Scholar 

  • Rees HL, Eggleton JD, Rachor E, Vanden Berghe E (2007) Structure and dynamics of the North Sea benthos. ICES Cooperative Research Report, no 288

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Schwarzer K (2011) Cruise report RV Alkor AL 378, Morphodynamik in der Deutschen Bucht, Teilprojekt Bodenmodell - Sediment, 22.07.-07.08.2011. doi:10.3289/CR_AL378

  • Schwarzer K, Ricklefs K, Bartholomä A, Zeiler M (2008) Geological development of the North Sea and the Baltic Sea. Die Küste 74:1–17

    Google Scholar 

  • Siefert W (1984) North Sea tide and storm surge investigation. Coast Eng Proc 1(19)

  • Streif H (2004) Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quat Int 112:3–28. doi:10.1016/S1040-6182(03)00062-4

    Article  Google Scholar 

  • Taghon GL, Nowell ARM, Jumars PA (1984) Transport and breakdown of fecal pellets: biological and sedimentological consequences. Limnol Oceanogr 29:64–72

    Article  Google Scholar 

  • van der Molen J (2002) The influence of tides, winds and waves on the net sand transport in the North Sea. Cont Shelf Res 22:2739–2762. doi:10.1016/S0278-4343(02)00124-3

    Article  Google Scholar 

  • van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, the scikits-image contributors (2014) scikit-image: Image processing in Python. Peer J 2:e453. doi:10.7717/peerj.453

    Article  Google Scholar 

  • van Hoey G, Vincx M, Degraer S (2006) Some recommendations for an accurate estimation of Lanice conchilega density based on tube counts. Helgol Mar Res 60:317–321. doi:10.1007/s10152-006-0041-8

    Article  Google Scholar 

  • van Hoey G, Guilini K, Rabaut M, Vincx M, Degraer S (2008) Ecological implications of the presence of the tube-building polychaete Lanice conchilega on soft-bottom benthic ecosystems. Mar Biol 154:1009–1019. doi:10.1007/s00227-008-0992-1

    Article  Google Scholar 

  • van Lancker V, Moerkerke G, Du Four I, Verfailie E, Rabaut M, Degraer S (2012) Fine-scale geomorphological mapping of sandbank environments for the prediction of macrobenthic occurrences, Belgian part of the North Sea. In: Harris PT, Baker EK (eds) Seafloor geomorphology as benthic habitat. Elsevier, Amsterdam, pp 251–260

    Chapter  Google Scholar 

  • van Overmeeren R, Craeymeersch J, van Dalfsen J, Fey F, van Heteren S, Meesters E (2009) Acoustic habitat and shellfish mapping and monitoring in shallow coastal water – Side scan sonar experiences in The Netherlands. Estuar Coast Shelf Sci 85:437–448. doi:10.1016/j.ecss.2009.07.016

    Article  Google Scholar 

  • Werner F (2004) Coarse sand patterns in the southeastern German Bight and their hydrodynamic relationship. Meyniana 56:117–148

    Google Scholar 

  • Wilken D, Feldens P, Wunderlich T, Heinrich C (2012) Application of 2D Fourier filtering for elimination of stripe noise in side-scan sonar mosaics. Geo-Mar Lett 32:1–11. doi:10.1007/s00367-012-0293-z

    Article  Google Scholar 

  • Willems W, Goethals P, van den Eynde D, van Hoey G, van Lancker V, Verfaillie E, Vincx M, Degraer S (2008) Where is the worm? Predictive modelling of the habitat preferences of the tube-building polychaete Lanice conchilega. Ecol Model 212:74–79. doi:10.1016/j.ecolmodel.2007.10.017

    Article  Google Scholar 

  • Yadav J, Sharma M (2013) A review of k-mean algorithm. Int J Eng Trends Technol 4:2972–2976

    Google Scholar 

  • Zeiler M, Schulz-Ohlberg J, Figge K (2000) Mobile sand deposits and shoreface sediment dynamics in the inner German Bight (North Sea). Mar Geol 170:363–380. doi:10.1016/S0025-3227(00)00089-X

    Article  Google Scholar 

  • Ziegelmeier E (1952) Beobachtungen über den Röhrenbau von Lanice conchilega (Pallas) im Experiment und am natürlichen Standort. Helgolander Meeresun 4:107–129

    Article  Google Scholar 

Download references

Acknowledgements

The data derive from the project AufMod-F (Establishment of modelling systems for the prediction of long-term morphodynamics in the German Bight), which was funded by the German Ministry for Education and Research, grant number 03KIS087. We thank the masters and crews of RV Alkor as well as H. Beese for technical support. Constructive assessments by six reviewers proved useful in improving an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Heinrich.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinrich, C., Feldens, P. & Schwarzer, K. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight). Geo-Mar Lett 37, 289–303 (2017). https://doi.org/10.1007/s00367-016-0477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0477-z

Keywords

Navigation