Skip to main content

Advertisement

Log in

Coincidence or not? Interconnected gas/fluid migration and ocean–atmosphere oscillations in the Levant Basin

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almogi-Labin A, Buchbinder B, Siman-Tov R, Grossowicz L, Eshet Y, Rosenfeld A (2001) Stratigraphic and environmental analysis of the Romi-1 borehole, offshore Israel. Geological Survey of Israel, Jerusalem

  • Avnaim-Katav S, Almogi-Labin A, Sandler A, Sivan D, Porat N, Matmon A (2012) The chronostratigraphy of a quaternary sequence at the distal part of the nile littoral cell, Haifa Bay, Israel. J Quat Sci 27:675–686. doi:10.1002/jqs.2537

    Article  Google Scholar 

  • Bard E, Hamelin B, Fairbanks RG, Zindler A (1990) Calibration of the 14-C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–409

    Article  Google Scholar 

  • Ben-Gai Y, Ben-Avraham Z, Buchbinder B, Kendall CGSC (2005) Post-Messinian evolution of the Southeastern Levant Basin based on two-dimensional stratigraphic simulation. Mar Geol 221:359–379

    Article  Google Scholar 

  • Bertoni C, Cartwright J, Hermanrud C (2013) Evidence for large-scale methane venting due to rapid drawdown of sea level during the Messinian Salinity Crisis. Geology 41:371–374

    Article  Google Scholar 

  • Biddle KT, Wielchowsky CC (1994) Hydrocarbon traps. Chapter 13: part III. Processes. In: Magoor LB, Dow WG (eds) The petroleum system from source to trap. Am Assoc Petrol Geosci Memoirs 60:219–235

  • Bowman SA (2011) Regional seismic interpretation of the hydrocarbon prospectivity of offshore Syria. GeoArabia 16:95–124

    Google Scholar 

  • Camerlenghi A, Cita M, Della Vedova B, Fusi N, Mirabile L, Pellis G (1995) Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Mar Geophys Res 17:115–141

    Article  Google Scholar 

  • Catuneanu O (2002) Sequence stratigraphy of clastic systems: concepts, merits, and pitfalls. J Afr Earth Sci 35:1–43. doi:10.1016/s0899-5362(02)00004-0

    Article  Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Holland

    Google Scholar 

  • Coleman DF, Ballard RD (2001) A highly concentrated region of cold hydrocarbon seeps in the southeastern Mediterranean Sea. Geo-Mar Lett 21:162–167. doi:10.1007/s003670100079

    Article  Google Scholar 

  • Dimitrov L (2002) Mud volcanoes - The most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76

    Article  Google Scholar 

  • Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern Mediterranean. Mar Geol 195:263–276

    Article  Google Scholar 

  • Duggen S, Hoernle K, Van Den Bogaard P, Rüpke L, Morgan JP (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–606

    Article  Google Scholar 

  • Dupré S, Woodside J, Foucher J-P, de Lange G, Mascle J, Boetius A, Mastalerz V, Stadnitskaia A, Ondréas H, Huguen C et al (2007) Seafloor geological studies above active gas chimneys off Egypt (Central Nile Deep Sea Fan). Deep Sea Res I Oceanogr Res Pap 54:1146–1172

    Article  Google Scholar 

  • Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275:1–19

    Article  Google Scholar 

  • Dupré S, Mascle J, Foucher J-P, Harmegnies F, Woodside J, Pierre C (2014) Warm brine lakes in craters of active mud volcanoes, Menes caldera off NW Egypt: evidence for deep-rooted thermogenic processes. Geo-Mar Lett 34:153–168. doi:10.1007/s00367-014-0367-1

    Article  Google Scholar 

  • Eruteya OE, Waldmann N, Schalev D, Makovsky Y, Ben-Avraham Z (2015) Intra- to post-Messinian deep-water gas piping in the Levant Basin, SE Mediterranean. Mar Pet Geol 66:246–261

    Article  Google Scholar 

  • Fairbanks R (1989) A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Feinstein S, Aizenshtat Z, Miloslavski I, Gerling P, Slager J, McQuilken J (2002) Genetic characterization of gas shows in the east Mediterranean offshore of southwestern Israel. Org Geochem 33:1401–1413. doi:10.1016/s0146-6380(02)00184-5

    Article  Google Scholar 

  • Feseker T, Brown KR, Blanchet C, Scholz F, Nuzzo M, Reitz A, Schmidt M, Hensen C (2010) Active mud volcanoes on the upper slope of the western Nile deep-sea fan—first results from the P362/2 cruise of R/V Poseidon. Geo-Mar Lett 30:169–186. doi:10.1007/s00367-010-0192-0

    Article  Google Scholar 

  • Foucher J-P, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby mud volcano, offshore northern Norway, over the time period 2003–2006. Geo-Mar Lett 30:157–167. doi:10.1007/s00367-010-0193-z

    Article  Google Scholar 

  • Garcia-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernández M, Vergés J, De Vicente R (2009) Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462:778–781

    Article  Google Scholar 

  • Gardosh M, Druckman Y, Buchbinder B, Calvo R (2008) The Oligo-Miocene deepwater system of the Levant Basin. Geological Survey of Israel, Jerusalem

    Google Scholar 

  • Gargani J, Rigollet C (2007) Mediterranean Sea level variations during the Messinian salinity crisis. Geophys Res Lett 34, L10405. doi:10.1029/2007GL029885

    Article  Google Scholar 

  • Halbouty MT (1972) Rationale for deliberate pursuit of stratigraphic, unconformity, and paleogeomorphic traps. Am Assoc Petrol Geol Spec Publ 10:3–7

    Google Scholar 

  • Haq B (1998) Natural gas hydrates: searching for the long-term climatic and slope-stability records. Geol Soc Lond Spec Publ 137:303–318

    Article  Google Scholar 

  • Hart B (2008) Channel detection in 3-D seismic data using sweetness. Am Assoc Pet Geol Bull 92:733–742

    Google Scholar 

  • Hunt D, Tucker ME (1992) Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sed Geol 81:1–9

    Article  Google Scholar 

  • Judd AG (2003) The global importance and context of methane escape from the seabed. Geo-Mar Lett 23:147–154. doi:10.1007/s00367-003-0136-z

    Article  Google Scholar 

  • Just J, Hübscher C, Betzler C, Lüdmann T, Reicherter K (2011) Erosion of continental margins in the Western Mediterranean due to sea-level stagnancy during the Messinian Salinity Crisis. Geo-Mar Lett 31:51–64. doi:10.1007/s00367-010-0213-z

    Article  Google Scholar 

  • Krijgsman W, Hilgen F, Raffi I, Sierro F, Wilson D (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655

    Article  Google Scholar 

  • Lafuerza S, Sultan N, Canals M, Frigola J, Berne S, Jouet G, Galavazi M, Sierro F (2009) Overpressure within upper continental slope sediments from CPTU data, Gulf of Lion, NW Mediterranean Sea. Int J Earth Sci 98:751–768

    Article  Google Scholar 

  • Lazar M, Schattner U, Reshef M (2012) The great escape: an intra-Messinian gas system in the eastern Mediterranean. Geophys Res Lett 39, L20309. doi:10.1029/2012GL053484

    Article  Google Scholar 

  • Lee HJ, Locat J, Desgagnés P, Parsons JD, McAdoo BG, Orange DL, Puig P, Wong FL, Dartnell P, Boulanger E (2007) Submarine mass movements on continental margins. In: Nittrouer CA, Austin JA, Field ME, Kravitz JH, Syvitski JPM, Wilberg PL (eds) Continental margin sedimentation: from sediment transport to sequence stratigraphy. Blackwell, Oxford, pp 213–274

    Chapter  Google Scholar 

  • León R, Somoza L, Medialdea T, González FJ, Díaz-del-Río V, Fernández-Puga MC, Maestro A, Mata MP (2007) Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates. Geo-Mar Lett 27:237–247. doi:10.1007/s00367-007-0074-2

    Article  Google Scholar 

  • León R, Somoza L, Medialdea T, González FJ, Gimenez-Moreno CJ, Pérez-López R (2014) Pockmarks on either side of the Strait of Gibraltar: formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand? Geo-Mar Lett 34:131–151. doi:10.1007/s00367-014-0358-2

    Article  Google Scholar 

  • Loncke L, Mascle J, Fanil Scientific Parties (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences. Mar Pet Geol 21:669–689

    Article  Google Scholar 

  • Loncke L, Gaullier V, Droz L, Ducassou E, Migeon S, Mascle J (2009) Multi-scale slope instabilities along the Nile deep-sea fan, Egyptian margin: a general overview. Mar Pet Geol 26:633–646

    Article  Google Scholar 

  • Luyendyk B, Kennett J, Clark JF (2005) Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level. Mar Pet Geol 22:591–596

    Article  Google Scholar 

  • Lykousis V, Alexandri S, Woodside J, de Lange G, Dählmann A, Perissoratis C, Heeschen K, Ioakim C, Sakellariou D, Nomikou P, Rousakis G, Casas D, Ballas D, Ercilla G (2009) Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea). Mar Pet Geol 26:854–872. doi:10.1016/j.marpetgeo.2008.05.002

    Article  Google Scholar 

  • Macgregor DS (2012) The development of the Nile drainage system: integration of onshore and offshore evidence. Pet Geosci 18:417–431

    Article  Google Scholar 

  • Marfurt KJ, Kirlin RL, Farmer SL, Bahorich MS (1998) 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 63:1150–1165

    Article  Google Scholar 

  • Mascle J, Mary F, Praeg D, Brosolo L, Camera L, Ceramicola S, Dupré S (2014) Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo-Mar Lett 34:89–110. doi:10.1007/s00367-014-0356-4

    Article  Google Scholar 

  • Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geology 32:53–56

    Article  Google Scholar 

  • Miller KG, Mountain GS, Wright JD, Browning JV (2011) Sea level and ice volume variations. Oceanography 24:40–53

    Article  Google Scholar 

  • Mitchum RM Jr, Vail PR, Sangree JB (1977) Seismic stratigraphy and global changes of sea level. Part 6. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. AAPG Memoir 26:117–133

    Google Scholar 

  • Nisbet E (1990) The end of the ice age. Can J Earth Sci 27:148–157

    Article  Google Scholar 

  • Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401:775–778

    Article  Google Scholar 

  • Owen M, Day S, Maslin M (2007) Late Pleistocene submarine mass movements: occurrence and causes. Quat Sci Rev 26:958–978

    Article  Google Scholar 

  • Pape T, Kasten S, Zabel M, Bahr A, Abegg F, Hohnberg H-J, Bohrmann G (2010) Gas hydrates in shallow deposits of the Amsterdam mud volcano, Anaximander Mountains, Northeastern Mediterranean Sea. Geo-Mar Lett 30:187–206. doi:10.1007/s00367-010-0197-8

    Article  Google Scholar 

  • Pilcher R, Argent J (2007) Mega-pockmarks and linear pockmark trains on the West African continental margin. Mar Geol 244:15–32

    Article  Google Scholar 

  • Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308

    Article  Google Scholar 

  • Posamentier HW, Allen GP (1999) Siliciclastic sequence stratigraphy: concepts and applications. SEPM Concepts in Sedimentology and Paleontology, Tulsa, OK

  • Riboulot V, Cattaneo A, Sultan N, Garziglia S, Ker S, Imbert P, Voisset M (2013) Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria. Earth Planet Sci Lett 375:78–91

    Article  Google Scholar 

  • Riboulot V, Thomas Y, Berné S, Jouet G, Cattaneo A (2014) Control of Quaternary sea level changes on gas seeps. Geophys Res Lett 41:4970–4977

    Article  Google Scholar 

  • Rollet N, Logan G, Kennard J, O’Brien P, Jones A, Sexton M (2006) Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: an example from the tropical, carbonate Yampi Shelf, Northwest Australia. Mar Pet Geol 23:145–164

    Article  Google Scholar 

  • Roveri M, Flecker R, Krijgsman W, Lofi J, Lugli S, Manzi V, Sierro FJ, Bertini A, Camerlenghi A, de Lange G (2014) The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar Geol 352:25–58

    Article  Google Scholar 

  • Sandler A, Herut B (2000) Composition of clays along the continental shelf off Israel: contribution of the Nile versus local sources. Mar Geol 167:339–354

    Article  Google Scholar 

  • Schattner U, Lazar M, Tibor G, Ben-Avraham Z, Makovsky Y (2010) Filling up the shelf—A sedimentary response to the last post-glacial sea rise. Mar Geol 278:165–176

    Article  Google Scholar 

  • Schattner U, Lazar M, Harari D, Waldmann N (2012) Active gas migration systems offshore northern Israel, first evidence from seafloor and subsurface data. Cont Shelf Res 48:167–172

    Article  Google Scholar 

  • Schroot BM, Klaver GT, Schüttenhelm RT (2005) Surface and subsurface expressions of gas seepage to the seabed—examples from the Southern North Sea. Mar Pet Geol 22:499–515

    Article  Google Scholar 

  • Sela-Adler M, Herut B, Bar-Or I, Antler G, Eliani-Russak E, Levy E, Makovsky Y, Sivan O (2015) Geochemical evidence for biogenic methane production and consumption in the shallow sediments of the SE Mediterranean shelf (Israel). Cont Shelf Res 101:117–124

    Article  Google Scholar 

  • Suc J-P, Do Couto D, Melinte-Dobrinescu MC, Macaleţ R, Quillévéré F, Clauzon G, Csato I, Rubino J-L, Popescu S-M (2011) The Messinian salinity crisis in the Dacic Basin (SW Romania) and early Zanclean Mediterranean–Eastern Paratethys high sea-level connection. Palaeogeogr Palaeoclimatol Palaeoecol 310:256–272

    Article  Google Scholar 

  • Sultan N, Marsset B, Ker S, Marsset T, Voisset M, Vernant A-M, Bayon G, Cauquil E, Adamy J, Colliat J (2010) Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta. J Geophys Res Solid Earth 115, B08101. doi:10.1029/2010JB007453

    Article  Google Scholar 

  • Tibor G, Ben-Avraham Z (1992) Late Tertiary seismic facies and structures of the Levant passive margin off central Israel, eastern Mediterranean. Mar Geol 105:253–273

    Article  Google Scholar 

  • Toyos MH, Medialdea T, León R, Somoza L, González FJ, Meléndez N (2016) Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz. Geo-Mar Lett 36. doi:10.1007/s00367-016-0440-z

  • Vail P, Mitchum R Jr, Thompson S III (1977) Seismic stratigraphy and global changes of sea level: part 4. Global cycles of relative changes of sea level: section 2. Application of seismic reflection configuration to stratigraphic interpretation. AAPG Spec 165:83–97

    Google Scholar 

  • Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustasy and sedimentology - an overview. In: Einsele G, Ricken W, Seilacher W (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 617–659

    Google Scholar 

  • Woodside JM, Volgin AV (1996) Brine pools associated with Mediterranean Ridge mud diapirs: an interpretation of echo-free patches in deep tow sidescan sonar data. Mar Geol 132:55–61

    Article  Google Scholar 

  • Woodside J, Ivanov M, Limonov A (1998) Shallow gas and gas hydrates in the Anaximander Mountains region, eastern Mediterranean Sea. Geol Soc Lond Spec Publ 137:177–193

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Barak Herut, Gideon Amit, Gidon Tibor, Giora Boxer and the crews of the R/V Eziona and R/V Shikmona, including students of the Department of Marine Geosciences, University of Haifa who collected data during educational cruises as well as Moshe Reshef for his assistance. We are also indebted to the Israeli Ministry of National Infrastructures, Energy and Water Resources for providing a scholarship for G. Lang. We thank Paradigm Geophysical, IHS Kingdom Suite and Petrel-Schlumberger for providing academic licenses that enabled seismic processing and interpretation. We thank ILDC, Modi Energy and GGR for their permission to show the seismic data. The article benefitted from comments by C. Bertoni, two anonymous reviewers and the journal editors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lazar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, M., Lang, G. & Schattner, U. Coincidence or not? Interconnected gas/fluid migration and ocean–atmosphere oscillations in the Levant Basin. Geo-Mar Lett 36, 293–306 (2016). https://doi.org/10.1007/s00367-016-0447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0447-5

Keywords

Navigation