Skip to main content
Log in

Altered marine tephra deposits as potential slope failure planes?

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Weathering of tephra results in increasing proportions of mechanically weak, authigenic clay minerals (smectite). This suggests that altered tephra represent inherent weak layers in slope sediment sequences, and these may facilitate slope failure in submarine and other aquatic environments. In drained direct shear experiments, tephra in different alteration stages were compared to common sand–clay mixtures for geotechnical reference. Attention is drawn to the influence of particle shape on shear strength. The results revealed volcanic ash to have (1) a high strength end-member at low alteration stages due to particle roughness and angularity and (2) a low strength end-member after complete diagenetic alteration, both under static conditions. This would suggest that strongly altered volcanic ash layers could potentially be responsible for slope failures. However, a review of ODP and IODP Expedition reports shows that advanced ash alteration mostly occurs at depths below (>800 mbsf) those commonly observed for slope failure initiation (<400 mbsf). This, in turn, suggests that volcanic ash alteration does not play an important role in the initiation of slope failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bolton MD (1986) The strength and dilatancy of sand. Géotechnique 36:65–78

    Article  Google Scholar 

  • Brown KM, Kopf A, Underwood MB, Weinberger JL (2003) Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: a weak plate boundary. Earth Planet Sci Lett 214:589–603

    Article  Google Scholar 

  • Camerlenghi A, Urgeles R, Fantoni L (2010) A database on submarine landslides of the Mediterranean Sea. In: Mosher DC, Shipp C, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 503–513

    Google Scholar 

  • Castro G (1975) Liquefaction and cyclic mobility of saturated sands. J Geotech Eng 101:551–569

    Google Scholar 

  • Christidis GE (2001) Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece. Clays Clay Minerals 49:204–215

    Article  Google Scholar 

  • Deutsches Institut für Normung (1979) Laborgeräte aus Glas; Aräometer, Grundlagen für Bau und Justierung. In: DIN-Norm 12790. Beuth, Berlin

  • Deutsches Institut für Normung (1996) Baugrund, Untersuchung von Bodenproben - Bestimmung der Dichte nichtbindiger Böden bei lockerster und dichtester Lagerung. In: DIN-Norm 1826. Beuth, Berlin

  • Deutsches Institut für Normung (2002) Baugrund, Untersuchung von Bodenproben - Bestimmung der Scherfestigkeit. In: DIN-Norm 18137-3. Beuth, Berlin

  • Expedition 333 Scientists (2012) Expedition 333 summary. In: Henry P, Kanamatsu T, Moe K, Expedition 333 Scientists, IODP Management International IfIODP (ed) IODP Preliminary Reports 333, Integrated Ocean Drilling Program Management International, Tokyo

  • Expedition 340 Scientists (2012) Lesser Antilles volcanism and landslides: implications for hazard assessment and long-term magmatic evolution of the arc. In: IODP Management International IfIODP (ed) IODP Preliminary Reports 340

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin

    Book  Google Scholar 

  • Ghiara MR, Petti C (1995) Chemical alteration of volcanic glasses and related control by secondary minerals: experimental studies. Aquat Geochem 1:329–354

    Article  Google Scholar 

  • Gieskes JM, Lawrence JR (1981) Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores. Geochim Cosmochim Acta 45:1687–1703. doi:10.1016/0016-7037(81)90004-1

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Harders R, Kutterolf S, Hensen C, Moerz T, Brueckmann W (2010) Tephra layers: a controlling factor on submarine translational sliding? Geochem Geophys Geosyst 11, Q05S23. doi:10.1029/2009GC002844

    Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, CA

    Google Scholar 

  • Hein JR, Scholl DW (1978) Diagenesis and distribution of late Cenozoic volcanic sediment in the southern Bering Sea. Geol Soc Am Bull 89:197–210

    Article  Google Scholar 

  • Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362

    Article  Google Scholar 

  • Kopf A, Alves T, Heesemann B, Kaul N, Kock I, Krastel S, Reichelt M, Schäfer R, Stegmann S, Strasser M, Thölen M (2006) Report and preliminary results of Poseidon cruise P336: CREST - Cretan Sea Tectonics and Sedimentation. Berichte Fachbereich Geowissenschaften 253, University of Bremen, Bremen

  • Krumbein WC, Sloss LL (eds) (1963) Stratigraphy and sedimentation. W.H. Freeman, San Francisco, CA

    Google Scholar 

  • Laberg JS, Kawamura K, Amundsen H, Baeten N, Forwick M, Rydningen TA, Vorren TO (2014) A submarine landslide complex affecting the Jan Mayen Ridge, Norwegian–Greenland Sea: slide-scar morphology and processes of sediment evacuation. Geo-Mar Lett 34:51–58. doi:10.1007/s00367-013-0345-z

    Article  Google Scholar 

  • Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Géotechnique 51:197–243

    Article  Google Scholar 

  • Leroueil S, Vaunat J, Picarelli L, Locat J, Lee Homa J, Faure R (1996) Geotechnical characterization of slope movements. In: Proc Int Symposium on Landslides, Trondheim, pp 53–74

  • Locat J, Leroueil S, Locat A, Lee H (2014) Weak layers: their definition and classification from a geotechnical perspective. In: Krastel S, Behrmann J-H, Völker D, Stipp M, Berndt C, Urgeles R, Chaytor J, Huhn K, Strasser M, Harbitz CB (eds) Submarine Mass Movements and Their Consequences. Springer, Berlin, pp 3–12

    Chapter  Google Scholar 

  • Loizeau J-L, Arbouille D, Santiago S, Vernet J-P (1994) Evaluation of a wide range laser diffraction grain-size analyser for use with sediments. Sedimentology 41:353–361

    Article  Google Scholar 

  • Lupini JF, Skinner AE, Vaughan PR (1981) The drained residual strength of cohesive soils. Géotechnique 31:181–213

    Article  Google Scholar 

  • Mair K, Frye KM, Marone C (2002) Influence of grain characteristics on the friction of granular shear zones. J Geophys Res 107:ECV 4-1–ECV 4-9. doi:10.1029/2001JB000516

    Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans R Soc A Math Phys Eng Sci 364:2009–2039

    Article  Google Scholar 

  • Matthews DH (1962) Altered lavas from the floor of the eastern North Atlantic. Nature 194:368–369. doi:10.1038/194368a0

    Article  Google Scholar 

  • McAdoo B, Pratson L, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behaviour. Wiley, Hoboken, NJ

    Google Scholar 

  • Mix AC, Tiedemann R, Blum P (2003) Proc ODP. In: Init Repts 202, College Station, TX

  • Noorany I (1989) Classification of marine sediments. J Geotech Eng 115:23–37. doi:10.1061/(ASCE)0733-9410

    Article  Google Scholar 

  • Parson L, Hawkins J, Allan J et al. (1992) Proc ODP. In: Init Repts 135, College Station, TX

  • Perry EA Jr, Edward A, Gieskes JM, Lawrence JR (1976) Mg, Ca and O18/O16 exchange in the sediment-pore water system, hole 149, DSDP. Geochim Cosmochim Acta 40:413–423. doi:10.1016/0016-7037(76)90006-5

    Article  Google Scholar 

  • Riley CM, Rose WI, Bluth GJS (2003) Quantitative shape measurements of distal volcanic ash. J Geophys Res 108(B10):2504. doi:10.1029/2001JB000818

    Article  Google Scholar 

  • Ross CS, Hendricks SB (1945) Minerals of the montmorillonite group: their origin and relation to soils and clays. US Government Printing Office, Washington

    Google Scholar 

  • Ross CS, Shannon EV (1926) The minerals of bentonite and related clays and their physical properties 1. J Am Ceramic Soc 9:77–96. doi:10.1111/j.1151-2916.1926.tb18305.x

    Article  Google Scholar 

  • Sacks IS, Suyehiro K, Acton GD (2000) Proc ODP. In: Init Repts 186, College Station, TX

  • Sadrekarimi A, Olson SM (2010) Particle damage observed in ring shear tests on sands. Can Geotech J 47:497–515. doi:10.1139/T09-117

    Article  Google Scholar 

  • Sadrekarimi A, Olson SM (2011) Critical state friction angle of sands. Géotechnique 61:771–783

    Article  Google Scholar 

  • Sassa K, He B, Miyagi T, Strasser M, Konagai K, Ostric M, Setiawan H, Takara K, Nagai O, Yamashiki Y, Tutumi S (2012) A hypothesis of the Senoumi submarine megaslide in Suruga Bay in Japan—based on the undrained dynamic-loading ring shear tests and computer simulation. Landslides 9:439–455. doi:10.1007/s10346-012-0356-2

    Article  Google Scholar 

  • Strasser M, Henry P, Kanamatsu T, Thu M, Moore G (2012) Scientific drilling of mass-transport deposits in the Nankai Accretionary Wedge: first results from IODP Expedition 333. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 671–681

    Chapter  Google Scholar 

  • Stroncik N, Schmincke H-U (2002) Palagonite – a review. Int J Earth Sci 91:680–697. doi:10.1007/s00531-001-0238-7

    Article  Google Scholar 

  • Suess E, von Huene R (1988) Proc ODP. In: Init Repts 112, College Station, TX

  • Syvitski JPM, Asprey KW, Clattenburg DA (1991) Principles, design and calibration of settling tubes. In: Syvitski JPM (ed) Principles, methods and application of particle size analysis. Cambridge University Press, New York, pp 45–63

    Chapter  Google Scholar 

  • Vogt C, Lauterjung J, Fischer RX (2002) Investigation of the clay fraction (<2 μm) of the clay minerals society reference clays. Clays Clay Minerals 50:388–400

    Article  Google Scholar 

  • Vrolijk P (1990) On the mechanical role of smectite in subduction zones. Geology 18:703–707

    Article  Google Scholar 

  • Wiemer G, Reusch A, Strasser M, Kreiter S, Otto D, Mörz T, Kopf A (2012) Static and cyclic shear strength of cohesive and non-cohesive sediments. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine Mass Movements and Their Consequences. Springer, Dordrecht, pp 111–121

    Chapter  Google Scholar 

  • Wiemer G, Moernaut J, Stark N, Kempf P, De Batist M, Pino M, Urrutia R, de Guevara B, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci (in press). doi:10.1007/s00531-015-1144-8

  • Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta 68:4843–4858. doi:10.1016/j.gca.2004.05.027

    Article  Google Scholar 

  • Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

All data are available by contacting the first author. We are grateful to the Deutsche Forschungsgemeinschaft (Bonn, Germany) for funding MARUM - Center for Marine Environmental Sciences. Vulkatec GmbH is acknowledged for providing various pumice sands. Matthias Lange and Christian Zöllner are thanked for technical assistance with the direct shear apparatuses at the MARUM Marine Geotechnics laboratory. S. Lafuerza is gratefully thanked for providing the GS sample material from IODP Expedition 340. Assessments by J.S. Laberg and an anonymous reviewer proved useful in improving the article.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauvain Wiemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiemer, G., Kopf, A. Altered marine tephra deposits as potential slope failure planes?. Geo-Mar Lett 35, 305–314 (2015). https://doi.org/10.1007/s00367-015-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-015-0408-4

Keywords

Navigation