Skip to main content
Log in

Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of −57 to −136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of −43 to −133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the possible involvement of at least two distinct AOM-related microbial consortia at the inferred AOM depth zonation of G11 and G12 pockmark sediments. In both sediment cores, the δ13C profiles for most archaeal lipids suggest a direct assimilation of dissolved inorganic carbon (DIC) in addition to methane by ANMEs (chemoautotrophy); constant and highly depleted δ13C profiles for PMI:3, an archaeal lipid biomarker presumably related to ANME-2, suggest a direct assimilation of 13C-depleted methane-derived carbon via AOM (methanotrophy). Evidently, the common approach of investigating lipid biomarker contents and δ13C signatures in cold seep sediments does not suffice to precisely discriminate between the carbon assimilation mode for each ANME archaeal group and associated bacteria. Rather, this needs to be combined with further specific labelling studies including different carbon sources (methane carbon, methane-derived organic intermediates and DIC) in order to unravel the metabolic pathways of each microbial consortium involved in AOM (ANME-1 vs. ANME-2 vs. ANME-3 archaeal group and associated bacteria).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aloisi G, Bouloubassi I, Heijs SK, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, Forney LJ, Rouchy J-M (2002) CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet Sci Lett 203:195–203

    Article  Google Scholar 

  • Andreassen K, Mienert J, Bryn P, Singh SC (2000) A double gas-hydrate related bottom simulating reflector at the Norwegian continental margin. Ann N Y Acad Sci 912:126–135

    Article  Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546

    Article  Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 101:11111–11116

    Article  Google Scholar 

  • Blumenberg M, Seifert R, Nauhaus K, Pape T, Michaelis W (2005) In vitro study of lipid biosynthesis in an anaerobically methane-oxidizing microbial mat. Appl Environ Microbiol 71:4345–4351

    Article  Google Scholar 

  • Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann B, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  Google Scholar 

  • Bouloubassi I, Aloisi G, Pancost RD, Hopmans E, Pierre C, Sinninghe Damsté JS (2006) Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Org Geochem 37:484–500

    Article  Google Scholar 

  • Bouloubassi I, Nabais E, Pancost RD, Lorre A, Taphanel M-H (2009) First biomarker evidence for methane oxidation at cold seeps in the South East Atlantic (REGAB pockmark). Deep-Sea Res II 56:2239–2247

    Article  Google Scholar 

  • Cambon-Bonavita MA, Nadalig T, Roussel E, Delage E, Duperron S, Caprais J-C, Boetius A, Sibuet M (2009) Diversity and distribution of methane oxidizing microbial communities associated with different faunal assemblages in a giant pockmark of the Gabon continental margin. Deep-Sea Res II 56:2248–2258

    Article  Google Scholar 

  • Chatterjee S, Dickens GR, Bhatnagar G, Chapman WG, Dugan B, Snyder GT, Hirasaki GJ (2011) Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective. J Geophys Res 116:B09103. doi:10.1029/2011JB008290

    Google Scholar 

  • Chen Y, Ussler W, Haflidason H, Lepland A, Rise R, Hovland H, Hjelstuen BO (2010) Sources of methane inferred from pore water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chem Geol 275:127–138

    Article  Google Scholar 

  • Chen Y, BianY, Haflidason H, Matsumoto R (2011) Present and past methane seepage in pockmark CN03, Nyegga, offshore mid-Norway. In: Proc 7th Int Conf Gas Hydrates (ICGH 2011), 17–21 July 2011, Edinburgh. http://www.pet.hw.ac.uk/icgh7/papers/icgh2011Final00186.pdf

  • Chevalier N, Bouloubassi I, Stadnitskaia A, Taphanel M-H, Lorre A, Sinninghe Damsté J, Pierre C (2010) Distributions and carbon isotopic compositions of lipid biomarkers in authigenic carbonate crusts from the Nordic margin (Norwegian Sea). Org Geochem 41:885–890

    Article  Google Scholar 

  • Chevalier N, Bouloubassi I, Birgel D, Crémière A, Taphanel M-H, Pierre C (2011) Authigenic carbonates at cold seeps in the Marmara Sea (Turkey): a lipid biomarker and stable carbon and oxygen isotope investigation. Mar Geol 288:112–121

    Article  Google Scholar 

  • Chevalier N, Bouloubassi I, Birgel D, Taphanel M-H, Lopez-Garcia P (2013) Microbial methane turnover at Marmara Sea cold seeps: a combined 16 rRNA and lipid biomarker investigation. Geobiology 11:55–71

    Article  Google Scholar 

  • Decker C, Morineaux M, Van Gaever S, Caprais JC, Lichtschlag A, Gauthier O, Andersen AC, Olu K (2012) Habitat heterogeneity influences cold-seep macrofaunal communities within and among seeps along the Norwegian margin. Part 1: macrofaunal community structure. Mar Ecol 33:205–230

    Article  Google Scholar 

  • Elvert M, Niemann H (2008) Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano. Org Geochem 39:167–177

    Article  Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight Cisotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419

    Article  Google Scholar 

  • Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia at cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209

    Article  Google Scholar 

  • Foucher J-P, Westbrook GK, Boetius A, Ceramicola S, Dupré S, Mascle J, Mienert J, Pfannkuche O, Pierre C, Praeg D (2009) Structure and drivers of cold seep ecosystems. Oceanography 22:92–109

    Article  Google Scholar 

  • Hill TM, Paull CK, Critser RB (2012) Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Mar Lett 32:73–84

    Article  Google Scholar 

  • Hinrichs K-U, Boetius AB (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Heidelberg, pp 457–477

    Chapter  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    Article  Google Scholar 

  • Hjelstuen BO, Haflidason H, Sejrup H, Nygård A (2010) Sedimentary and structural control on pockmark development—evidence from the Nyegga Pockmark Field, NW European margin. Geo-Mar Lett 30:221–230

    Article  Google Scholar 

  • Hopmans EC, Schouten S, Pancost RD, Van der Meer MJT, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589

    Article  Google Scholar 

  • Hovland M (1981) Characteristics of pockmarks in the Norwegian Trench. Mar Geol 39:103–117

    Article  Google Scholar 

  • Hovland M, Svensen H (2006) Submarine pingoes: indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea. Mar Geol 228:15–23

    Article  Google Scholar 

  • Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fosså JH, Jonsson R, Rueslåtten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191–206

    Article  Google Scholar 

  • Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041

    Article  Google Scholar 

  • Hustoft S, Mienert J, Bünz S, Nouzé H (2007) High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin. Mar Geol 245:89–106

    Article  Google Scholar 

  • Hustoft S, Bünz S, Mienert J (2010) Three-dimensional seismic analyses of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway. Basin Res 22:465–480

    Article  Google Scholar 

  • Ivanov M, Westbrook GK, Blinova V, Kozlova E, Mazzini A, Nouzé H, Minshull TA (2007) First sampling of gas hydrate from the Vøring Plateau. Eos Trans AGU 88:209–216

    Article  Google Scholar 

  • Ivanov M, Mazzini A, Blinova V, Kozlova E, Laberg J-S, Matveeva T, Taviani M, Kaskov N (2010) Seep mounds on the Southern Vøring Plateau (offshore Norway). Mar Petrol Geol 27:1235–1261

    Article  Google Scholar 

  • Kellermann MY, Wegner G, Elvert M, Yukio Yoshinaga M, Lin YS, Holler T, Prieto Mollar X, Knittel K, Hinrichs K-U (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109:19321–19326

    Article  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon). Geomicrobiol J 20:269–294

    Article  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  Google Scholar 

  • Koga Y, Akagawa-Matsushita M, Ohga M, Nishihara M (1993) Taxonomic significance of the distribution of component parts of polar ether lipids in methanogens. Syst Appl Microbiol 16:342–351

    Article  Google Scholar 

  • Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236

    Article  Google Scholar 

  • Lazar CS, Dinasquet J, L’Haridon S, Pignet P, Toffin L (2011) Distribution of anaerobic methane-oxidizing and sulfate reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Anton Leeuw 100:639–653

    Article  Google Scholar 

  • Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  Google Scholar 

  • Mazzini A, Svensen H, Hovland M, Planke S (2006) Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Mar Geol 231:89–102

    Article  Google Scholar 

  • Meulepas RJW, Jagersma CG, Khadem AF, Buisman CJN, Stams AJM, Lens PNL (2009a) Effect of environmental conditions on sulfate reduction with methane as electron donor by an Eckernförde Bay enrichment. Environ Sci Technol 43:6553–6559

    Article  Google Scholar 

  • Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens PNL (2009b) Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104:458–470

    Article  Google Scholar 

  • Mienert J, Vanneste M, Haflidason H, Bünz S (2010) Norwegian margin outer shelf cracking: a consequence of climate-induced gas hydrate dissociation? Int J Earth Sci 99:207–225. doi:10.1007/s00531-010-0536-z

    Article  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9:187–196

    Article  Google Scholar 

  • Niemann H, Elvert M (2008) Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org Geochem 39:1668–1677

    Article  Google Scholar 

  • Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher J-P, Boetius A (2006a) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  Google Scholar 

  • Niemann H, Duarte J, Hensen C, Omoregie E, Magalhães VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006b) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336–5355

    Article  Google Scholar 

  • Omoregie EO, Niemann H, Mastalerz V, DeLange GJ, Stadnitskaia A, Mascle J, Foucher J-P, Boetius A (2009) Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea. Mar Geol 261:114–127

    Article  Google Scholar 

  • Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, Mckeegan KD, Delong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Article  Google Scholar 

  • Pancost RD, Sinninghe Damsté JS, de Lint S, van der Maarel MJEC, Gottschal JC, Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132

    Article  Google Scholar 

  • Pancost RD, Bouloubassi I, Aloisi V, Sinninghe Damsté JS, the MEDINAUT Shipboard Scientific Party (2001a) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crests. Org Geochem 32:695–707

    Article  Google Scholar 

  • Pancost RD, Hopmans EC, Sinninghe Damsté JS, the MEDINAUT Shipboard Scientific Party (2001b) Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611–1627

    Article  Google Scholar 

  • Pancost RD, Zhang CL, Tavacoli J, Talbot HM, Farrimond P, Schouten S, Sinninghe Damsté JS, Sassen R (2005) Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 227:48–66

    Article  Google Scholar 

  • Paull CK, Ussler W, Holbrook WS, Hill TM, Keaten R, Mienert J, Haflidason H, Johnson JE, Winters WJ, Lorenson TD (2008) Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Mar Lett 28:43–51

    Article  Google Scholar 

  • Pernthaler A, Dekas AE, Brown CT, Goffredi SK, Embaye T, Orphan VJ (2008) Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc Natl Acad Sci U S A 105:7052–7057

    Article  Google Scholar 

  • Plaza-Faverola A, Bünz S, Mienert J (2010) Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. Mar Petrol Geol 27:46–60

    Article  Google Scholar 

  • Plaza-Faverola A, Bünz S, Mienert J (2011) Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth Planet Sci Lett 305:297–308

    Article  Google Scholar 

  • Pohlman JW, Riedel M, Bauer JE, Canue EA, Paull CK, Lapham L, Grabowski KS, Coffin RB, Spence GD (2013) Anaerobic methane oxidation in low-organic content methane seep sediments. Geochim Cosmochim Acta 108:184–201

    Article  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  Google Scholar 

  • Reiche S, Hjelstuen BO, Haflidason H (2011) High-resolution seismic stratigraphy, sedimentary processes and the origin of seabed cracks and pockmarks at Nyegga, mid-Norwegian margin. Mar Geol 284:28–39

    Article  Google Scholar 

  • Roalkvam I, Jørgensen SL, Chen Y, Stokke R, Dahle H, Hocking WP, Lanzén A, Haflidason H, Steen IH (2011) New insight into stratification of anaerobic methanotrophs in cold seep sediments. FEMS Microbiol Ecol 78:233–243

    Article  Google Scholar 

  • Roalkvam I, Dahle H, Chen Y, Jørgensen SL, Haflidason H, Steen IH (2012) Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux. Front Microbiol 3:216. doi:10.3389/fmicb.2012.00216

    Article  Google Scholar 

  • Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150

    Google Scholar 

  • Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs KU (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Article  Google Scholar 

  • Schouten S, Hopmans EC, Sinninghe Damste JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61

    Article  Google Scholar 

  • Stadnitskaia A, Muyzer G, Abbas B, Coolen MJL, Hopmans EC, Bass M, van Weering TCE, Ivanov MK, Poludetkina E, Sinninghe Damsté JS (2005) Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 217:67–96

    Article  Google Scholar 

  • Stadnitskaia A, Nadezhkin D, Abbas B, Blinova V, Ivanov MK, Sinninghe Damsté JS (2008a) Carbonate formation by anaerobic oxidation of methane: evidence from lipid biomarker and fossil 16S rDNA. Geochim Cosmochim Acta 72:1824–1836

    Article  Google Scholar 

  • Stadnitskaia A, Bouloubassi I, Elvert M, Hinrichs K-U, Sinninghe Damsté JS (2008b) Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy in cold seepage habitats. Org Geochem 39:1007–1014

    Article  Google Scholar 

  • Thiel V, Peckmann J, Reitner J, Seifert R, Wehrung P, Michaelis W (1999) Highly isotopically depleted isoprenoids – molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Article  Google Scholar 

  • Vaular EN, Barth T, Haflidason H (2010) The geochemical characteristics of the hydrate-bound gases from the Nyegga pockmark field, Norwegian Sea. Org Geochem 41:437–444

    Article  Google Scholar 

  • Wakeham SG, Lewis CM, Hopmans EC, Schouten S, Sinninghe Damsté JS (2003) Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim Cosmochim Acta 67:1359–1374

    Article  Google Scholar 

  • Wegener G, Niemann H, Elvert M, Hinrichs K-U, Boetius A (2008) Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environ Microbiol 10:2287–2298

    Article  Google Scholar 

  • Westbrook GH, Exley R, Minshull TA, Nouzé H, Gailler A, Jose T, Ker S, Plaza A (2008) High-resolution 3D seismic investigations of hydrate-bearing fluid-escape chimneys in the Nyegga region of the Vøring Plateau, Norway. In: Proc 6th Int Conf Gas Hydrates (ICGH 2008), 6–10 July 2008, Vancouver. http://hdl.handle.net/2429/1175

Download references

Acknowledgments

This work was supported by the HERMES project funded by the European Commission’s Framework Six Programme, EC contract no. GOCE-CT-2005-511234, by a grant from the Ministry of Education (France) to Nicolas Chevalier, and by a VENI grant from the Netherlands Organization for Scientific Research (NWO) to Alina Stadnitskaia. We thank the scientific team of the VICKING cruise, the captain and crew of the R/V Pourquoi pas?, and Catherine Pierre for sediment sampling. Also gratefully acknowledged are the technical and scientific staff of the Department of Marine Organic Biogeochemistry at NIOZ. Constructive assessments by three anonymous reviewers and the editors proved useful in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Bouloubassi.

Additional information

Responsible guest editor: C. Pierre

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, N., Bouloubassi, I., Stadnitskaia, A. et al. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures. Geo-Mar Lett 34, 269–280 (2014). https://doi.org/10.1007/s00367-014-0363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-014-0363-5

Keywords

Navigation