Skip to main content
Log in

A meshless method for multi-material topology optimization based on the alternating active-phase algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, a meshless method based on the alternating active-phase algorithm is proposed for the multi-material topology optimization problems. Mathematic model of the proposed method is built by the solid isotropic microstructure with penalization (SIMP) theory and solved by the optimality criteria. During the optimization process, the nodal relative density is chosen as the design variable and Shepard interpolation combined with the moving least squares (MLS) shape function is utilized to obtain the nodal relative density. Nodal integration method is then adopted to obtain the structural stiffness matrix, with the purpose of promoting the computational efficiency. Since the element-free Galerkin (EFG) method is applied to analyze the structure, sensitivity filtering is avoided and mesh-dependence phenomena are alleviated. Several numerical examples are provided to illustrate the validity and feasibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Deaton JD, Grandhi RV (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  2. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  3. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim 43:1–16

    MATH  Google Scholar 

  4. Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41:671–683

    Article  Google Scholar 

  5. Huang X, Xie YM (2008) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MathSciNet  MATH  Google Scholar 

  7. Allaire G, Gournay FD, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybernetics 34(1):59–80

    MathSciNet  MATH  Google Scholar 

  8. Dijk NP, Maute K, Langelaar M, Keulen FV (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48:437–472

    Article  MathSciNet  Google Scholar 

  9. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  10. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  11. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  12. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  14. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  15. Atluri SN, Zhu T (2000) The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25:169–179

    Article  MATH  Google Scholar 

  16. Zheng J, Long SY, Li GY (2010) The topology optimization design for continuum structures based on the element free Galerkin method. Eng Anal Bound Elem 34:666–672

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo Z, Zhang N, Gao W, Ma H (2012) Structural shape and topology optimization using a meshless Galerkin level set method. Int J Numer Meth Eng 90:369–389

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Meth Eng 93:443–464

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao F (2013) A meshless Pareto-optimal method for topology optimization. Eng Anal Bound Elem 37:1625–1631

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21:1851–1865

    Article  Google Scholar 

  21. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  22. Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43:811–825

    Article  MATH  Google Scholar 

  23. Zhou S, Wang MY (2006) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33:89–111

    Article  MathSciNet  MATH  Google Scholar 

  24. Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565

    Article  MathSciNet  Google Scholar 

  25. Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37:321–337

    Article  Google Scholar 

  28. Allaire G, Dapogny C, Delgado G, Michailidis G (2014) Multi-phase structural optimization via a level set method. ESAIM Control Optim Calc Var 20:576–611

    Article  MathSciNet  MATH  Google Scholar 

  29. Vermaak N, Michailidis G, Parry G, Estevez R, Allaire G, Bréchet Y (2014) Material interface effects on the topology optimizationof multi-phase structures using a level set method. Struct. Multidiscip. Optim 50:623–644

    MathSciNet  Google Scholar 

  30. Wang YQ, Luo Z, Zhang K, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283:1570–1586

    Article  MathSciNet  Google Scholar 

  31. Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidiscip Optim 49:621–642

    Article  MathSciNet  Google Scholar 

  32. Shepard D (1968) A two-dimensional function for irregularly spaced points. Proceedings of the 23rd ACM National Conference, pp 517–524

  33. Brodlie KW, Asim MR, Unsworth K (2005) Constrained visualization using the Shepard interpolation family. Comput Graph Forum 24(4):809–820

    Article  Google Scholar 

  34. Beisse S, Belytschkob T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Engrg 139:49–74

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of China Scholarship Council (201506965015). The authors are also grateful to the anonymous reviewers for their valuable suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingtao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Chen, H., Zhou, J. et al. A meshless method for multi-material topology optimization based on the alternating active-phase algorithm. Engineering with Computers 33, 871–884 (2017). https://doi.org/10.1007/s00366-017-0503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0503-4

Keywords

Navigation