Skip to main content
Log in

The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The main purpose of this article is to investigate the numerical solution of two-dimensional Fredholm integral equations of the second kind on normal domains, whose kernels have logarithmic singularity. Radial basis functions constructed on scattered points are utilized as a basis in the discrete collocation method to solve these types of integral equations. We encounter logarithm-like singular integrals in the process of setting up the presented scheme which cannot be computed by classical quadrature formulae. Therefore, a special numerical integration rule is required to approximate such integrals based on the use of dual non-uniform composite Gauss–Legendre quadratures on normal domains. Since the method proposed in the current paper does not need any background mesh, it is meshless and consequently independent of the geometry of domain. The error estimate and the convergence rate of the approach are studied for the presented method. The convergence accuracy of the new technique is examined over four integral equations on the tear, annular, crescent, and castle domains, and obtained results confirm the theoretical error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92

    Article  MathSciNet  MATH  Google Scholar 

  2. Assari P, Adibi H, Dehghan M (2013) A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl Math Model 37(22):9269–9294

    Article  MathSciNet  MATH  Google Scholar 

  3. Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181

    Article  MathSciNet  MATH  Google Scholar 

  4. Assari P, Adibi H, Dehghan M (2014) A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algor 67(2):423–455

    Article  MathSciNet  MATH  Google Scholar 

  5. Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93

    Article  MathSciNet  MATH  Google Scholar 

  6. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  7. Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Chen W, Lin W (2001) Galerkin trigonometric wavelet methods for the natural boundary integral equations. Appl Math Comput 121(1):75–92

    MathSciNet  MATH  Google Scholar 

  9. Cheng AH, Golberg MA, Kansa EJ, Zammito Q (2003) Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer Meth Partial Differ Eqs 19(5):571–594

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan M, Shokri A (2007) A numerical method for KVD equation using collocation and radial basis functions. Nonlinear Dyn 50(1–2):111–120

    Article  MATH  Google Scholar 

  12. Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simulat 79(3):700–715

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230(2):400–410

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang W, Wang Y, Xu Y (2004) An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J Sci Comput 20(2):277–302

    Article  MathSciNet  MATH  Google Scholar 

  15. Fasshauer GE (1997) Solving partial differential equations by collocation with radial basis functions. In: Le M’ehaut’e A, Rabut C, Schumaker LL (eds), Surface fitting and multiresolution methods, Vanderbilt, University Press, pp 131–138

  16. Fasshauer GE (2005) Meshfree methods. In: Handbook of theoretical and computational nanotechnology, American Scientific Publishers

  17. Fasshauer GE, Zhang JG (2007) On choosing “optimal” shape parameters for RBF approximation. Numer Algor 45(1–4):345–368

    Article  MathSciNet  MATH  Google Scholar 

  18. Franke R (1982) Scattered data interpolation: tests of some methods. Math Comput 38(157):181–200

    MathSciNet  MATH  Google Scholar 

  19. Golbabai A, Seifollahi S (2006) Numerical solution of the second kind integral equations using radial basis function networks. Appl Math Comput 174(2):877–883

    MathSciNet  MATH  Google Scholar 

  20. Graham IG (1993) Collocation methods for two dimensional weakly singular integral equations. J Austral Math Soc (Series B), 22

  21. Graham IG, Schneider C (1985) Product integration for weakly singular integral equations in m dimensional space. In: Hammerlin G, Hoffman KH (eds) Constructive methods for the practical treatment of integral equations

  22. Hardy RL (2006) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 176(8):1905–1915

    Google Scholar 

  23. Hon YC, Cheung KF, Mao X, Kansa EJ (1999) Multiquadric solution for shallow water equations. ASCE J Hydraul Eng 125(5):524–533

    Article  Google Scholar 

  24. Hon YC, Mao XZ (1998) An efficient numerical scheme for Burgers’ equation. Appl Math Comput 95(1):37–50

    MathSciNet  MATH  Google Scholar 

  25. Hon YC, Mao XZ (1999) A radial basis function method for solving options pricing model. Financ Eng 8:31–49

    Google Scholar 

  26. Johnston BM, Johnston PR (2003) A comparison of transformation methods for evaluating two-dimensional weakly singular integrals. Int J Numer Meth Eng 56(4):589–607

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comp 62(206):739–753

    Article  MathSciNet  MATH  Google Scholar 

  28. Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-i surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  29. Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-ii solutions to parabolic, hyperbolic and elliptic partial differential equations. C Comput Math Appl 19(8–9):147–161

    Article  MathSciNet  MATH  Google Scholar 

  30. Kress B (1989) Linear integral equations. springer, Berlin

    Book  MATH  Google Scholar 

  31. Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256

    Article  MathSciNet  MATH  Google Scholar 

  32. Li X, Zhu J (2009) A Galerkin boundary node method and its convergence analysis. J Comput Appl Math 230(1):314–328

    Article  MathSciNet  MATH  Google Scholar 

  33. Li X, Zhu J (2009) A Galerkin boundary node method for biharmonic problems. Eng Anal Bound Elem 33(6):858–865

    Article  MathSciNet  MATH  Google Scholar 

  34. Li X, Zhu J (2009) A meshless Galerkin method for Stokes problems using boundary integral equations. Comput Methods Appl Mech Eng 198:2874–2885

    Article  MathSciNet  MATH  Google Scholar 

  35. Marcozzi MD, Choi S, Chen CS (2001) On the use of boundary conditions for variational formulations arising in financial mathematics. Appl Math Comput 124(2):197–214

    MathSciNet  MATH  Google Scholar 

  36. Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. Z Angew Math Phys 30(2):292–304

    Article  MathSciNet  MATH  Google Scholar 

  37. Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262

    Article  MathSciNet  MATH  Google Scholar 

  38. Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218(9):5292–5309

    MathSciNet  MATH  Google Scholar 

  39. Pedas A, Vainikko G (1997) Superconvergence of piecewise polynomial collocations for nonlinear weakly singular integral equations. J Integral Equ Appl 9(4):379–406

    Article  MathSciNet  MATH  Google Scholar 

  40. Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39(4):811–841

    Article  MathSciNet  MATH  Google Scholar 

  41. Shokri A, Dehghan M (2010) A not-a-knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation. Comput Phys Commun 181(12):1990–2000

    Article  MathSciNet  MATH  Google Scholar 

  42. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33(3):1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  43. Tatari M, Dehghan M (2010) A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 34(3):206–212

    Article  MathSciNet  MATH  Google Scholar 

  44. Vainikko G (1993) Multidimensional weakly singular integral equations. springer, Berlin

    Book  MATH  Google Scholar 

  45. Wahba G (1979) Convergence rate of “thin plate” smoothing splines when the data are noisy (preliminary report). Springer Lecture Notes in Math, 757

  46. Wazwaz AM (2011) Linear and nonlinear integral equations: methods and applications. Higher Education Press, Springer, Heidelberg

    Book  MATH  Google Scholar 

  47. Wendland H (2005) Scattered data approximation. Cambridge University Press, New York

    MATH  Google Scholar 

  48. Zerroukat M, Power H, Chen CS (1998) A numerical method for heat transfer problems using collocation and radial basis functions. Internat J Numer Methods Eng 42(7):1263–1278

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to both anonymous reviewers for their valuable comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Assari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, P., Dehghan, M. The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision. Engineering with Computers 33, 853–870 (2017). https://doi.org/10.1007/s00366-017-0502-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0502-5

Keywords

Navigation