Skip to main content
Log in

Adaptive boundary layer meshing for viscous flow simulations

  • Regular Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A procedure for anisotropic mesh adaptation accounting for mixed element types and boundary layer meshes is presented. The method allows to automatically construct meshes on domains of interest to accurately and efficiently compute key flow quantities, especially near wall quantities like wall shear stress. The new adaptive approach uses local mesh modification procedures in a manner that maintains layered and graded elements near the walls, which are popularly known as boundary layer or semi-structured meshes, with highly anisotropic elements of mixed topologies. The technique developed is well suited for viscous flow applications where exact knowledge of the mesh resolution over the computational domain required to accurately resolve flow features of interest is unknown a priori. We apply the method to two types of problem cases; the first type, which lies in the field of hemodynamics, involves pulsatile flow in blood vessels including a porcine aorta case with a stenosis bypassed by a graft whereas the other involves high-speed flow through a double throat nozzle encountered in the field of aerodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Sahni O, Müller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comp Meth Appl Mech Eng 195:5634–5655

    Article  MATH  Google Scholar 

  2. Pirzadeh S (1994) Unstructured viscous grid generation by the advancing-layers method. AIAA J 32:1735–1737

    Article  Google Scholar 

  3. Connell SD, Braaten ME (1995) Semi-structured mesh generation for three-dimensional Navier–Stokes calculations. AIAA J 33:1017–1024

    Article  MATH  Google Scholar 

  4. Garimella RV, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations. Int J Numer Meth Eng 49:193–218

    Article  MATH  Google Scholar 

  5. Ito Y, Nakahashi K (2002) Unstructured mesh generation for viscous flow computations. In: Proceedings of 11th Internatinal Meshing Roundtable, Ithaca

  6. Jansen KE, Shephard MS, Beall MW (2001) On anisotropic mesh generation and quality control in complex flow problems. In: Proceedings of 10th Internatinal Meshing Roundtable, Newport Beach

  7. Khawaja A, Kallinderis Y (2000) Hybrid grid generation for turbomachinery and aerospace applications. Int J Numer Meth Eng 49:145–166

    Article  MATH  Google Scholar 

  8. Löhner R, Cebral J (2000) Generation of non-isotropic unstructured grids via directional enrichment. Int J Numer Meth Eng 49:219–232

    Article  MATH  Google Scholar 

  9. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72:449–466

    Article  MATH  Google Scholar 

  10. Buscaglia GC, Dari EA (1997) Anisotropic mesh optimization and its application in adaptivity. Int J Numer Meth Eng 40:4119–4136

    Article  MATH  Google Scholar 

  11. Castro-Diáz MJ, Hecht F, Mohammadi B, Pironneau O (1997) Anisotropic unstructured mesh adaption for flow simulations. Int J Numer Meth Fluids 25:475–491

    Article  MATH  Google Scholar 

  12. Frey PJ, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comp Meth Appl Mech Eng 194:5068–5082

    Article  MathSciNet  MATH  Google Scholar 

  13. Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adaptation by mesh modifications. Comp Meth Appl Mech Eng 194:4915–4950

    Article  MathSciNet  MATH  Google Scholar 

  14. Li X, Shephard MS, Beall MW (2003) Accounting for curved domains in mesh adaptation. Int J Numer Meth Eng 58:247–276

    Article  MATH  Google Scholar 

  15. Müller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA (2005) Anisotropic adaptive finite element method for modelling blood flow. Comp Meth Biomech Biomed Eng 8:295–305

    Article  Google Scholar 

  16. Pain CC, Umpleby AP, de Oliveira CRE, Goddard AJH (2001) Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comp Meth Appl Mech Eng 190:3771–3796

    Article  MATH  Google Scholar 

  17. Remacle JF, Li X, Shephard MS, Flaherty JE (2005) Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods. Int J Numer Meth Eng 62:899–923

    Article  MathSciNet  MATH  Google Scholar 

  18. Khawaja A, Minyard T, Kallinderis Y (2000) Adaptive hybrid grid methods. Comp Meth Appl Mech Eng 189:1231–1245

    Article  MATH  Google Scholar 

  19. Kallinderis Y, Kavouklis C (2005) A dynamic adaptation scheme for general 3-D hybrid meshes. Comp Meth Appl Mech Eng 194:5019–5050

    Article  MATH  Google Scholar 

  20. Garimella RV (1999) Anisotropic tetrahedral mesh generation. PhD Thesis, Rensselaer Polytechnic Institute

  21. Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Method Eng 40:3979–4002

    Article  MathSciNet  MATH  Google Scholar 

  22. Ku JP, Draney MT, Arko FR, Lee WA, Chan FP, Pelc NJ, Zarins CK, Taylor CA (2002) In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann Biomed Eng 30:743–752

    Article  Google Scholar 

  23. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comp Meth Appl Mech Eng 158:155–196

    Article  MathSciNet  MATH  Google Scholar 

  24. Taylor CA, Draney M, Ku J, Parker D, Steel B, Wang K, Zarins C(1999) Predictive medicine: computational techniques in therapeutic decision-making. Comp Aided Surg 4(5):231–247

    Article  Google Scholar 

  25. Stuhne GR, Steinman DA (2004) Finite-element modeling of the hemodynamics of stented aneurysms. Trans ASME J Biomech Eng 126(3):382–387

    Article  Google Scholar 

  26. Bristeau MO, Glowinski R, Periaux J, Viviand H (1987) Presentation of problems and discussion of results. In: Bristeau MO, Glowinski R, Periaux J, Viviand H (eds) Numerical simulation of compressible Navier–Stokes flows, notes on numerical fluid mechanics, vol 18, Vieweg, pp 1–40

  27. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comp Meth Appl Mech Eng 195:5685–5706

    Article  MathSciNet  MATH  Google Scholar 

  28. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comp Meth Appl Mech Eng 32:199–259

    Article  MathSciNet  MATH  Google Scholar 

  29. Whiting CH, Jansen KE (2001) A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis. Int J Numer Meth Fluids 35:93–116

    Article  MATH  Google Scholar 

  30. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comp Meth Appl Mech Eng 190: 305–319

    Article  MathSciNet  Google Scholar 

  31. Shakib F, http://www.acusim.com

  32. Womersley J (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol (Lond) 127:553–563

    Google Scholar 

  33. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comp Meth Appl Mech Eng 195:3776–3796

    Article  MathSciNet  MATH  Google Scholar 

  34. Hughes TJR, Franca LP, Mallet M (1986) A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of thermodynamics. Comp Meth Appl Mech Eng 54:223–234

    Article  MathSciNet  MATH  Google Scholar 

  35. Whiting CH, Jansen KE, Dey S (2003) Hierarchical basis in stabilized finite element methods for compressible flows. Comp Meth Appl Mech Eng 192:5167–5185

    Article  MATH  Google Scholar 

  36. Hughes TJR, Franca LP, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comp Meth Appl Mech Eng 58:329–336

    Article  MathSciNet  MATH  Google Scholar 

  37. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by NSF grant ACI-0205741. We would also like to acknowledge that the solutions presented herein for blood flow simulations made use of the linear algebra library provided by AcuSim Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onkar Sahni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahni, O., Jansen, K.E., Shephard, M.S. et al. Adaptive boundary layer meshing for viscous flow simulations. Engineering with Computers 24, 267–285 (2008). https://doi.org/10.1007/s00366-008-0095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0095-0

Keywords

Navigation