Skip to main content
Log in

A Projection Method on Measures Sets

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider the problem of projecting a probability measure \(\pi \) on a set \({\mathcal {M}}_N\) of Radon measures. The projection is defined as a solution of the following variational problem:

$$\begin{aligned} \inf _{\mu \in {\mathcal {M}}_N} \Vert h\star (\mu - \pi )\Vert _2^2, \end{aligned}$$

where \(h\in L^2(\Omega )\) is a kernel, \(\Omega \subset {\mathbb {R}}^d\), and \(\star \) denotes the convolution operator. To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with N dots) or continuous line drawing (representing an image with a continuous line). We provide a necessary and sufficient condition on the sequence \(({\mathcal {M}}_N)_{N\in {\mathbb {N}}}\) that ensures weak convergence of the projections \((\mu ^*_N)_{N\in {\mathbb {N}}}\) to \(\pi \). We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings and drawings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, G., Aujol, J.-F., Blanc-Féraud, L.: Detecting codimension-two objects in an image with Ginzburg–Landau models. Int. J. Comput. Vis. 65(1–2), 29–42 (2005)

    Article  MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bogachev, V.I., Ruas, M.A.S.: Measure theory I, vol. 1. Springer, Berlin (2007)

    Book  Google Scholar 

  5. Bosch, R., Herman, A.: Continuous line drawings via the traveling salesman problem. Oper. Res. Lett. 32(4), 302–303 (2004)

    Article  MATH  Google Scholar 

  6. Boyer, C., Chauffert, N., Ciuciu, P., Kahn, J., Weiss, P.: On the generation of sampling schemes for magnetic resonance imaging. Preprint (2016)

  7. Chauffert, N., Weiss, P., Kahn, J., Ciuciu, P.: Gradient waveform design for variable density sampling in magnetic resonance imaging. arXiv preprint arXiv:1412.4621 (2014)

  8. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 20(10), 847–856 (1980)

    Article  Google Scholar 

  9. Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. arXiv preprint arXiv:1306.6909 (2013)

  10. Fornasier, M., Haškovec, J., Steidl, G.: Consistency of variational continuous-domain quantization via kinetic theory. Appl. Anal. 92(6), 1283–1298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornasier, M., Hütter, J.-C.: Consistency of probability measure quantization by means of power repulsion–attraction potentials. arXiv preprint arXiv:1310.1120 (2013)

  12. Gräf, M., Potts, D., Steidl, G.: Quadrature errors, discrepancies, and their relations to halftoning on the torus and the sphere. SIAM J. Sci. Comput. 34(5), A2760–A2791 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186(2), 456–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gwosdek, P., Schmaltz, C., Weickert, J., Teuber, T.: Fast electrostatic halftoning. J. Real-time Image Process. 9(2), 379–392 (2014)

    Article  Google Scholar 

  15. Kaplan, C.S., Bosch, R., et al.: Tsp art. In: Renaissance Banff: Mathematics, Music, Art, Culture, pp. 301–308. Canadian Mathematical Society, Ottawa (2005)

  16. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, New York (1968)

    MATH  Google Scholar 

  17. Keiner, J., Kunis, S., Potts, D.: Using NFFT 3—a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. (TOMS) 36(4), 19 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kloeckner, B.: Approximation by finitely supported measures. ESAIM Control Optim. Calc. Var. 18(02), 343–359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48(3), 769–783 (1998)

  20. Li, H., Mould, D.: Continuous line drawings and designs. Int. J. Creat. Interfaces Comput. Graph. 5(2), 16–39 (2014)

    Article  Google Scholar 

  21. Marteniuk, R.G., MacKenzie, C.L., Jeannerod, M., Athenes, S., Dugas, C.: Constraints on human arm movement trajectories. Can. J. Psychol. 41(3), 365 (1987)

    Article  Google Scholar 

  22. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Google Scholar 

  23. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pappas, T.N., Neuhoff, D.L.: Image processing. IEEE Trans. 8(8), 1102–1116 (1999)

    Google Scholar 

  25. Potts, D., Steidl, G.: Fast summation at nonequispaced knots by NFFT. SIAM J. Sci. Comput. 24(6), 2013–2037 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schmaltz, C., Gwosdek, P., Bruhn, A., Weickert, J.: Electrostatic halftoning. Comput. Graph. Forum 29(8), 2313–2327 (2010). doi:10.1111/j.1467-8659.2010.01716.x

    Google Scholar 

  27. Smale, S.: Mathematical problems for the next century. Math. Intell. 20(2), 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Teuber, T., Steidl, G., Gwosdek, P., Schmaltz, C., Weickert, J.: Dithering by differences of convex functions. SIAM J. Imaging Sci. 4(1), 79–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thomson, J.J.: On the structure of the atom. Philos. Mag. Ser. 7, 237–265 (1904)

    Article  MATH  Google Scholar 

  30. Ulichney, R.: Digital halftoning. MIT Press, Cambridge (1987)

    Google Scholar 

  31. Weiss, P., Blanc-Féraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wong, F.J., Takahashi, S.: A graph-based approach to continuous line illustrations with variable levels of detail. Comput. Graph. Forum 30(7), 1931–1939 (2011). doi:10.1111/j.1467-8659.2011.02040.x

    Article  Google Scholar 

  33. Xu, J., Kaplan, C.S.: Image-guided maze construction. ACM Trans. Graph. 26(3) (2007). doi:10.1145/1276377.1276414

Download references

Acknowledgments

We wish to thank Gabriele Steidl for a nice presentation on halftoning, which motivated us to work on this topic. We thank Daniel Potts and Toni Volkmer for helping using the excellent NFFT. We thank Pierre Emmanuel Godet and Chan Hwee Chong for authorizing them to use the images in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Weiss.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauffert, N., Ciuciu, P., Kahn, J. et al. A Projection Method on Measures Sets. Constr Approx 45, 83–111 (2017). https://doi.org/10.1007/s00365-016-9346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9346-2

Keywords

Mathematics Subject Classification

Navigation