Skip to main content
Log in

A Determinantal Approach to Irrationality

  • Published:
Constructive Approximation Aims and scope

Abstract

It is a classical fact that the irrationality of a number \(\xi \in \mathbb R\) follows from the existence of a sequence \(p_n/q_n\) with integral \(p_n\) and \(q_n\) such that \(q_n\xi -p_n\ne 0\) for all n and \(q_n\xi -p_n\rightarrow 0\) as \(n\rightarrow \infty \). In this paper, we give an extension of this criterion in the case when the sequence possesses an additional structure; in particular, the requirement \(q_n\xi -p_n\rightarrow 0\) is weakened. Some applications are given, including a new proof of the irrationality of \(\pi \). Finally, we discuss analytical obstructions to extend the new irrationality criterion further and speculate about some mathematical constants whose irrationality is still to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beukers, F.: A note on the irrationality of \(\zeta (2)\) and \(\zeta (3)\). Bull. Lond. Math. Soc. 11(3), 268–272 (1979)

    Article  MATH  Google Scholar 

  2. Beukers, F.: A rational approach to \(\pi \). Nieuw archief voor wiskunde Ser. 5 1(4), 372–379 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Borwein, P.B., Pritsker, I.E.: The multivariate integer Chebyshev problem. Constr. Approx. 30(2), 299–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, F.: Irrationality proofs for zeta values, moduli spaces and dinner parties. Preprint arXiv:1412.6508 [math.NT] (2014)

  5. Heine, H.E.: Handbuch der Kugelfunktionen, 2nd edn, vol. 1. G. Reimer, Berlin (1878); vol. 2. G. Reimer, Berlin (1881)

  6. Krattenthaler, C., Rochev, I., Väänänen, K., Zudilin, W.: On the non-quadraticity of values of the \(q\)-exponential function and related \(q\)-series. Acta Arith. 136(3), 243–269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Krattenthaler, C., Rivoal, T., Zudilin, W.: Séries hypergéométriques basiques, \(q\)-analogues des valeurs de la fonction zêta et formes modulaires. J. Inst. Math. Jussieu 5(1), 53–79 (2006)

    Article  MathSciNet  Google Scholar 

  8. Kronecker, L.: Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen. Berl. Monatsber. 1881, 535–600 (1881)

    MATH  Google Scholar 

  9. Luque, J.-G., Thibon, J.-Y.: Hankel hyperdeterminants and Selberg integrals. J. Phys. A 36(19), 5267–5292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Monien, H.: Hankel determinants of Dirichlet series. Preprint arXiv:0901.1883 [math.NT] (2009)

  11. Nesterenko, Y.V.: On Catalan’s constant. Chebyshevskiĭ Sb. (Tula State Pedagogical University) 16(1(53)), 118–124 (2015). (Russian)

    Google Scholar 

  12. Pólya, G., Szegö, G.: Problems and Theorems in Analysis, vol. II, Grundlehren Math. Wiss. 216. Springer, Berlin (1976)

  13. Rivoal, T.: Nombres d’Euler, approximants de Padé et constante de Catalan. Ramanujan J. 11, 199–214 (2006)

    Article  MathSciNet  Google Scholar 

  14. Sorokin, V.N.: A transcendence measure for \(\pi ^2\). Sb. Math. 187(12), 1819–1852 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zakharyuta, V.P.: Transfinite diameter, Chebyshev constants and capacity for a compactum in \({\mathbb{C}}^n\). Mat. Sb. (N.S.) 96(138), 374–389 (1975); English transl., Math. USSR-Sb. 25(3), 350–364 (1975)

  16. Zudilin, W.: A few remarks on linear forms involving Catalan’s constant. Chebyshevskiĭ Sb. (Tula State Pedagogical University) 3, no. 2 (4), 60–70 (2002); English transl., arXiv:math/0210423 [math.NT] (2002)

  17. Zudilin, W.: On the irrationality of generalized \(q\)-logarithm. Preprint arXiv:1601.02688 [math.NT] (2016)

Download references

Acknowledgments

There are several inspirations for this project, the most recent one being the work [4] of Francis Brown and, in particular, his remark there: “Much more optimistically still, one might hope to prove the transcendence of \(\zeta (3)\) by optimizing our polynomial forms in \(\zeta (3)\) along the lines of [14].” The other sources of inspiration include my joint work [6] with Christian Krattenthaler, Igor Rochev, and Keijo Väänänen on (related) Hankel-determinant constructions for certain q-hypergeometric series, and also the work [10] of Hartmut Monien on (unrelated) Hankel determinants on the values of Riemann’s zeta function at positive integers. I thank all these colleagues as well as Igor Pritsker for numerous helpful chats about the topic of this project. Furthermore, I am very grateful to Stéphane Fischler, whose constructive feedback was crucial at several places of the preliminary version. Special thanks go to the anonymous referee of the journal for his healthy criticism. Part of the work was done during my visit to the Max Planck Institute for Mathematics, Bonn, in March–April 2015. I am thankful to the staff and guests of the institute for creating the unique “mathemagical” atmosphere for scientific performance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadim Zudilin.

Additional information

Communicated by Doron S. Lubinsky.

The work is supported by Australian Research Council Grant DP170100466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zudilin, W. A Determinantal Approach to Irrationality. Constr Approx 45, 301–310 (2017). https://doi.org/10.1007/s00365-016-9333-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9333-7

Keywords

Mathematics Subject Classification

Navigation