Skip to main content
Log in

Classical-Quantum Correspondence and Functional Relations for Painlevé Equations

  • Published:
Constructive Approximation Aims and scope

Abstract

In light of the quantum Painlevé–Calogero correspondence, we investigate the inverse problem. We imply that this type of the correspondence (classical-quantum correspondence) holds true, and we find out what kind of potentials arise from the compatibility conditions of the related linear problems. The latter conditions are written as functional equations for the potentials depending on a choice of a single function—the left-upper element of the Lax connection. The conditions of the correspondence impose restrictions on this function. In particular, it satisfies the heat equation. It is shown that all natural choices of this function (rational, hyperbolic, and elliptic) reproduce exactly the Painlevé list of equations. In this sense, the classical-quantum correspondence can be regarded as an alternative definition of the Painlevé equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This function is going to satisfy one of the six Painlevé equations (in the Calogero form).

  2. It should be mentioned that functional equations play a very important role in the theory of integrable systems; they underlie the Lax equations, the \(r\)-matrix, and other structures [6, 28].

  3. There are in fact three essentially independent parameters.

  4. See also [42, 48] and [52].

  5. (B.4) was obtained in [31, 50].

  6. This formula was proved by K.Takasaki in [49] by comparison of analytic properties of both sides. In [58], the proof was given by a direct computation.

References

  1. Alexandrov, A., Kazakov, V., Leurent, S., Tsuboi, Z., Zabrodin, A.: Classical tau-function for quantum spin chains. arXiv:1112.3310 [math-ph]

  2. Aminov, G., Arthamonov, S.: New \(2 \times 2\)-matrix linear problems for Painlevé equations. arXiv: 1112.4688 [nlin.SI]

  3. Barouch, E., McCoy, B., Tracy, C., Wu, T.: Zero field susceptibility of the two-dimensional Ising model near \(T_c\). Phys. Rev. Lett. 31, 1409–1411 (1973)

    Article  Google Scholar 

  4. Bazhanov, V., Mangazeev, V.: The eight-vertex model and Painlevé VI. J. Phys. A Math. Gen. 39, 12235–12243 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett. B236, 144–150 (1990); Gross, D., Migdal, A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127–130 (1990); Douglas, M., Shenker, S.: Strings in less than one dimension. Nucl. Phys. B335, 635–654 (1990)

  6. Calogero, F.: On a functional equation connected with integrable many-body problems. Lettere Al Nuovo Cimento 16(3), 77–80 (1976); Buchstaber, V.M., Perelomov, A.M.: On the functional equation related to the quantum three-body problem, Contemporary mathematical physics. Am. Math. Soc. Transl. Ser. 2(175), 15–34 (1996). arXiv:math-ph/0205032; Braden, H.W., Buchstaber, V.M.: Integrable systems with pairwise interactions and functional equations arXiv:hep-th/9411240

  7. Conte, R. (ed.): The Painleve Property. One Century Later, CRM Series in Mathematical Physics, XXVI, 810 p (1999)

  8. Dubrovin, B.: Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., vol. 1620, Springer, Berlin, pp. 120–348 (1996); Dubrovin, B.: Painlevé equations in 2D topological field theories. In: Painleve Property, One Century Later, Cargése (1996). arXiv:math.AG/9803107

  9. Dubrovin, B., Mazzocco, M.: Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141(1), 55–147 (2000); Guzzetti, D.: The elliptic representation of the general Painlevé VI equation. Commun. Pure Appl. Math. 55(10), 1280–1363 (2002); Boalch, P.: From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. Lond. Math. Soc. 90(01), 167–208 (2005); Guzzetti, D.: A review on the sixth Painlevé equation. arXiv:1210.0311 [math.CA]

  10. Fateev, V., Litvinov, I.: On AGT conjecture. JHEP 1002, 014 (2010). arXiv:0912.0504

    Article  MathSciNet  Google Scholar 

  11. Flaschka, H., Newell, A.: Monodromy- and spectrum-preserving deformations, I. Commun. Math. Phys. 76, 65–116 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Forrester, P., Witte, N.: Application of the \(\tau \)-function theory of Painlevé equations to random matrices: \({\rm PIV}, {\rm PII}\) and the GUE, Commun. Math. Phys. 219 357–398 (2001); Forrester, P., Witte, N.: Random matrix theory and the sixth Painlevé equation. J. Phys. A Math. Gen. 39, 12211–12233 (2006)

  13. Fuchs, R.: Sur quelques équations différentielles linéares du second ordre. C. R. Acad. Sci. (Paris) 141, 555–558 (1905)

    Google Scholar 

  14. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 2012(10), 38 (2012). arXiv:1207.0787 [hep-th]

    Article  MathSciNet  Google Scholar 

  15. Gambier, B.: Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critique fixés. C. R. Acad. Sci. (Paris) 142, 266–269 (1906)

    MATH  Google Scholar 

  16. Garnier, R.: Sur des equations différentielles du troisiéme ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critique fixés. Ann. Ecol. Norm. Sup. 29, 1–126 (1912)

    MATH  MathSciNet  Google Scholar 

  17. Ince, E.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  18. Inozemtsev, V.I.: Lax representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys. 17, 11–17 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Its, A., Novokshenov, V.: The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math. 1191. Springer, Berlin (1986); Fokas, A., Its, A., Kapaev, A., Novokshenov, V.: Painlevé transcendents: the Riemann–Hilbert approach. AMS Mathematical Surveys and Monographs, vol. 128, Providence, RI (2006)

  20. Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé, a Modern Theory of Special Funtions, Aspects of Mathematics, E16. Friedr. Vieweg & Sohn, Braunschweig (1991)

    Book  Google Scholar 

  21. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II. Phys. D 2, 407–448 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients III. Phys. D 4, 26–46 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Density matrix of an impenetrable gas and the fifth Painlevé transcendent. Phys. D 1, 80–158 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jimbo, M., Nagoya, H., Sun, J.: Remarks on the confluent KZ equation for \({\rm sl}_{\rm 2}\) and quantum Painlevé equations. J. Phys. A Math. Theory 41, 175205 (2008); Nagoya, H.: Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations. J. Math. Phys. 52, 083509 (2011)

  25. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and \(\tau \)-function. Phys. D 2, 306–352 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Joshi, N., Kitaev, A., Treharne, P.: On the linearization of the Painlevé III–VI equations and reductions of the three-wave resonant system. J. Math. Phys. 48, 103512 (2007). (42 pp.), arXiv:0706.1750

    Article  MathSciNet  Google Scholar 

  27. Kazakov, V., Sorin, A., Zabrodin, A.: Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics. Nucl. Phys. B790, 345–413 (2008); Zabrodin, A.: Bäcklund transformations for difference Hirota equation and supersymmetric Bethe ansatz, Teor. Mat. Fyz. 155, 74–93 [English translation: Theor. Math. Phys. 155, 567–584 (2008)]

  28. Krichever, I.: Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles. Funk. Anal. i ego Pril. 14(4), 45–54 (1980). [translation: Funct. Anal. Appl. 14(4), 282–290 (1980)]; Krichever, I.: On rational solutions of the Kadomtsev–Petviashvili equation and on integrable systems of N particles on the line. Funct. Anal. Appl. 12(1), 76–78 (1978); Krichever, I., Zabrodin, A.: Spin generalization of the Ruijsenaars–Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra. Uspekhi Mat. Nauk 50(6), 3–56 (1995). [translation: Russ. Math. Surv. 50(6), 1101–1150 (1995)]

  29. Krichever, I., Lipan, O., Wiegmann, P., Zabrodin, A.: Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations. Commun. Math. Phys. 188, 267–304 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lee, S.-Y., Teodorescu, R., Wiegmann, P.: Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painleve I transcendent. Phys. D 240, 1080–1091 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Levin, A., Olshanetsky, M.: Painlevé–Calogero correspondence, Calogero–Moser–Sutherlend models (Montreal, 1997), CRM Ser. Math. Phys., Springer, pp. 313–332 (2000). arXiv: alg-geom/9706010

  32. Levin, A., Olshanetsky, M., Zotov, A.: Painlevé VI, Rigid tops and reflection equation. Commun. Math. Phys. 268(1), 67–103 (2006). arXiv:math/0508058 [math.QA]; Chernyakov, Y., Levin, A., Olshanetsky, M., Zotov, A.: Elliptic Schlesinger system and Painlevé VI. J. Phys. A Math. Gen. 39, 12083–12101 (2006). arXiv:nlin/0602043 [nlin.SI]; Levin, A., Zotov, A.: On rational and elliptic forms of Painlevé VI equation, Moscow Seminar on Mathematical Physics, II. Am. Math. Soc. Transl. Ser. 2 221, 173–184 (2007)

  33. Levin, A., Olshanetsky, M., Zotov, A.: Hitchin systems—symplectic hecke correspondence and two-dimensional version. Commun. Math. Phys. 236(1) 93–133 (2003). arXiv:nlin/0110045 [nlin.SI]; Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Characteristic classes and hitchin systems. General construction. Commun. Math. Phys. 316(1), 1–44 (2012). arXiv:1006.0702 [math-ph]

  34. Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Calogero–Moser systems for simple Lie groups and characteristic classes of bundles. J. Geometry Phys. 62, 1810–1850 (2012). arXiv:1007.4127 [math-ph]; Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Hecke transformations of conformal blocks in WZW theory. I. KZB equations for non-trivial bundles. SIGMA 8, 095, 37 pp., (2012). arXiv:1207.4386 [math-ph]; Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.: Characteristic classes of SL(N)-bundles and quantum dynamical elliptic R-matrices. J. Phys. A Math. Theor. to appear. arXiv:1208.5750 [math-ph]

  35. Levin, A., Olshanetsky, M., Zotov, A.: Planck constant as spectral parameter in integrable systems and KZB equations. JHEP 10, 109 (2014). arXiv:1408.6246 [hep-th]

  36. Manin, Y.: Sixth Painlevé equation, universal elliptic curve, and mirror of \(\mathbb{P}^2\). AMS Transl. (2) 186, 131–151 (1998)

  37. Marshakov, A., Mironov, A., Morozov, A.: On AGT relations with surface operator insertion and stationary limit of beta-ensembles. J. Geom. Phys. 61, 1203–1222 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mironov, A., Morozov, A., Runov, B., Zenkevich, Y., Zotov, A.: Spectral duality between Heisenberg chain and Gaudin model. Lett. Math. Phys. (2012), to appear, doi:10.1007/s11005-012-0595-0; arXiv:1206.6349 [hep-th]

  39. Mironov, A., Morozov, A., Shakirov, S.: Towards a proof of AGT conjecture by methods of matrix models. Int. J. Mod. Phys. A 27, 1230001 (2012). arXiv:1011.5629

    Article  MathSciNet  Google Scholar 

  40. Mironov, A., Morozov, A., Zenkevich, Y., Zotov, A.: Spectral duality in integrable systems from AGT conjecture. JETP Lett. 97(1) (2013). arXiv:1204.0913 [hep-th]

  41. Noumi, M., Yamada, Y.: A New Lax Pair for the Sixth Painlevé Equation Associated with \({\widehat{so}}\)(8), Microlocal Analysis and Complex Fourier Analysis, 238252. World Sci. Publ, River Edge, NJ (2002)

    Google Scholar 

  42. Novikov, D.P.: The \(2\times 2\) matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system. Theor. Math. Phys. 161(2), 1485–1496 (2009)

    Article  MATH  Google Scholar 

  43. Painlevé, P.: Memoire sur les équations différentielles dont l’intégrale générale est uniforme. Bull. Soc. Math. Phys. Fr. 28, 201–261; Painlevé, P.: Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math. 21(1902), 1–85 (1900)

  44. Schlesinger, L.: Über eine Klasse von Differentialsystemen beliebiger Ordnung mit feten kritischen Punkten. J. Reine u. Angew. Math. 141, 96–145 (1912)

    MATH  Google Scholar 

  45. Slavyanov, S.: Painlevé equations as classical analogs of Heun equations. J. Phys. A Math. Gen. 29, 7329–7335 (1996); Slavyanov, S.: Painlevé equations and isomonodromic deformations of equations of the Heun class. Theor. Math. Phys. 125(1), 744–753 (2000)

  46. Suleimanov, B.: The Hamiltonian property of Painlevé equations and the method of isomonodromic deformations. Differ. Equ. 30(5), 726–732 (1994). [Translated from Differentsialnie Uravneniya 30(5), 791–796 (1994)]

  47. Suleimanov, B.: “Quantizations” of the second Painlevé equation and the problem of the equivalence of its \(L\)-\(A\) pairs. Theor. Math. Phys. 156, 1280–1291 (2008). [Translated from Teor. Mat. Fys. 156, 364–377 (2008)]

  48. Suleimanov, B.: “Quantization” of higher hamiltonian analogues of the Painleve I and Painleve II equations with two degrees of freedom. arXiv:1204.4006 [nlin.SI]

  49. Takasaki, K.: Painlevé–Calogero correspondence revisited. J. Math. Phys. 42, 1443–1473 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Takasaki, K.: Elliptic Calogero–Moser systems and isomonodromic deformations. J. Math. Phys. 40, 57–87 (1999)

    Article  MathSciNet  Google Scholar 

  51. Tracy, C., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163, 33–72 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tsuda, T.: Universal characters, integrable chains and the Painlevé equations. Adv. Math. 197(2), 587–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Painlevé, P.: Sur les équations différentielles du second ordre à points critiques fixés. C. R. Acad. Sci. (Paris) 143, 1111–1117 (1906)

    Google Scholar 

  54. Zabrodin, A.: The master T-operator for vertex models with trigonometric \(R\)-matrices as classical tau-function. arXiv:1205.4152 [math-ph]

  55. Zabrodin, A.: Bethe ansatz and Hirota equation in integrable models. arXiv:1211.4428 [math-ph]

  56. Zabrodin, A.: Discrete Hirotas equation in quantum integrable models. Int. J. Mod. Phys. B11, 3125–3158 (1997); Zabrodin, A.: Hirota equation and Bethe ansatz. Teor. Mat. Fyz. 116, 54–100 (1998). [English translation: Theor. Math. Phys. 116, 782–819 (1998)]

  57. Zabrodin, A., Zotov, A.: Quantum Painlevé–Calogero correspondence. J. Math. Phys. 53, 073507 (2012). arXiv:1107.5672 [math-ph]

  58. Zabrodin, A., Zotov, A.: Quantum Painlevé–Calogero correspondence for Painlevé VI. J. Math. Phys. 53, 073508 (2012). arXiv:1107.5672 [math-ph]

  59. Zamolodchikov, Al: Painlevé III and 2D polymers. Nucl. Phys. B432, 427–456 (1994)

    Article  MathSciNet  Google Scholar 

  60. Zotov, A.: Elliptic linear problem for Calogero–Inozemtsev model and Painlevé VI equation. Lett. Math. Phys. 67, 153–165 (2004). arXiv:hep-th/0310260

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Morozov for discussions. The work was supported in part by Ministry of Science and Education of Russian Federation under contract 8207. The work of A. Zabrodin was also supported in part by RFBR Grant 11-02-01220, by joint RFBR Grants 12-02-91052-CNRS, 12-02-92108-JSPS, by Grant NSh-3349.2012.2 for support of leading scientific schools. The work of A. Zotov was also supported in part by RFBR-12-01-00482, RFBR-12-01-33071 mol_a_ved, by the Russian President fund MK-1646.2011.1 and by the “Dynasty” fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zabrodin.

Additional information

Communicated by Percy Deift and Alexander Its.

Appendices

Appendix A: Special Cases

1.1 \(b=(x-u(t))e^{g(t)x}\) and \(b=(x-u(t))e^{g(t)x^2}\)

Let \(b=(x-u(t))e^{g(t)x}\). The calculation similar to the one leading to (4.2) gives in this case

$$\begin{aligned} V_t(x)-V_t(u)- \frac{V'(x)+V'(u)}{2(x-u)}+ \frac{V(x)\! -\! V(u)}{(x-u)^2}-\frac{\ddot{g}}{2}\, (x-u) -\frac{g}{2}\left( V'(x)\! -\! V'(u)\right) =0 \end{aligned}$$
(A.1)

and

$$\begin{aligned} H=\frac{1}{2}\left( {\dot{u}}+\frac{g}{2}\right) ^2+V(u,t)-\frac{1}{2}u{\dot{g}}+\frac{1}{8}g^2, \end{aligned}$$
(A.2)

with equation of motion

$$\begin{aligned} {\ddot{u}}=-V'(u). \end{aligned}$$

It is easy to see that equation (A.1) becomes equivalent to (4.2) for the potential \(\tilde{V}(\tilde{x})\) after the change of variables

$$\begin{aligned} x \rightarrow \tilde{x} = x-\frac{1}{2}\, G(t) , \quad \quad V(x)\rightarrow \tilde{V}(x)=V\Bigl (x-\frac{1}{2}\, G(t)\Bigr ) - \frac{\dot{g}}{2}\, x, \end{aligned}$$

where \(\dot{G}=g\). Notice also that the dependence \(H({\dot{u}})\) in (A.2) can be obtained from (3.10) via the local expansion (3.8). The later gives \(b_1=e^{ug}\) and \(b_2=g\, e^{ug}\). Then \(v={\dot{u}}+\frac{g}{2}\).

Consider now the case \(b=(x-u(t))e^{g(t)x^2}\). Let us perform the calculation similar to the one leading to (4.2) again. In this case, we have:

$$\begin{aligned}&V_t(x)-V_t(u)-\frac{V'(x)+V'(u)}{2(x-u)}+ \frac{V(x)\! -\! V(u)}{(x-u)^2}-2{g}\left( V(x)\! -\! V(u)\right) \nonumber \\&\quad -g\Big (x V'(x)+u V'(u)\Big ) +(x^2-u^2)\left[ 3g{\dot{g}}-\frac{1}{2}\,{\ddot{g}}-2g^3 \right] =0 \end{aligned}$$
(A.3)

and

$$\begin{aligned} H=\frac{1}{2}\left( {\dot{u}}+{g}u\right) ^2+V(u,t)+\frac{1}{2}(g^2-{\dot{g}})u^2+\frac{3}{2}g, \end{aligned}$$
(A.4)

with equation of motion

$$\begin{aligned} {\ddot{u}}=-V'(u). \end{aligned}$$

As in the previous example, it can be shown that equation (A.3) becomes equivalent to (4.2) for the potential \(\tilde{V}(\tilde{x})\) after the following change of variables:

$$\begin{aligned} x \rightarrow \tilde{x}= & {} \alpha x=x\,e^{\int _t g(t)},\ \alpha =e^{\int _t g(t)},\\ V(x)\rightarrow \tilde{V}(x)= & {} \alpha ^2\Bigl ( V(\alpha x)- x^2\left( g^2-\int _t \frac{{\ddot{g}} -2g{\dot{g}}}{2\alpha ^2} \right) \Bigr )\\= & {} e^{2\int _t g(t)}\left( V(x\,e^{\int _t g(t)})- x^2\left( g^2-\int _t\left[ e^{-2\int _t g(t)}\left( \frac{1}{2}{\ddot{g}} -g{\dot{g}}\right) \right] \right) \right) . \end{aligned}$$

Notice also that the dependence \(H({\dot{u}})\) in (A.4) can be obtained from (3.10) via the local expansion (3.8). The latter gives \(b_1=e^{g u^2}\) and \(b_2=2gu\, e^{g u^2}\). Then \(v={\dot{u}}+gu\).

1.2 \(b=(x-u_1(t))(x-u_2(t))(x-u_3(t))\)

When \(b=(x-u_1)(x-u_2)(x-u_3)\), the coefficients behind the second-order pole \(\frac{1}{(x-u_1)^2}\) in (3.6) have the following form:

$$\begin{aligned}&V(x,t)-H+\frac{1}{2}{\dot{u}}_1^2+\frac{1}{2}\frac{{\dot{u}}_1+{\dot{u}}_2}{{ u}_1-{ u}_2}+\frac{1}{2}\frac{{\dot{u}}_1+{\dot{u}}_3}{{u}_1-{u}_3} -\frac{1}{2}\frac{1}{({u}_1-{ u}_2)^2}-\frac{1}{2}\frac{1}{({ u}_1-{ u}_3)^2}\\&\quad +\frac{1}{2}\frac{1}{({u}_1-{u}_2)({u}_1-{u}_3)}, \end{aligned}$$

and two other coefficients can be obtained by the cyclic permutations. All three coefficients cannot vanish simultaneously. Therefore, some other anzats for \(W\) (3.2) should be used in this case. This reflects the fact that (3.1)–(3.2) imply the one degree of freedom case.

1.3 \(b=(x-u_1(t))^{\gamma }\) and \(b=(x-u_1(t))^{\gamma _1}(x-u_2(t))^{\gamma _2}\)

Let us study the case \(b=(x-u_1(t))^{\gamma }\), where \(\gamma \in {\mathbb {C}}^*\) (the case \(\gamma =0\) is trivial). Notice that under change \(b\rightarrow b^\gamma \) the functions \(f\) (3.4) and \(S\) (3.5) transform as follows:

$$\begin{aligned} f= & {} \frac{b_x}{b}\longrightarrow \gamma \frac{b_x}{b},\\&S\longrightarrow V-H-\frac{1}{2}\gamma \frac{b_t}{b}+\frac{1}{2}\gamma \frac{b_{xx}}{b}+ \frac{1}{2}\left( \frac{1}{4}\gamma ^2-\gamma \right) \left( \frac{b_x}{b}\right) ^2. \end{aligned}$$

For the case under consideration, we have \(f={\gamma }\frac{1}{x-u}\) and

$$\begin{aligned} S=V-H+\frac{\gamma }{2}{\dot{u}}\frac{1}{x-u}+\frac{1}{2}\left( \frac{1}{4}\gamma ^2-\gamma \right) \frac{1}{(x-u)^2}. \end{aligned}$$

Substituting it into (3.6), we obtain the following condition for cancellation of the fourth- and the third-order poles:

$$\begin{aligned}&(x-u)^{-4}:\ \ 0=\frac{1}{4}\gamma (\gamma ^2-4\gamma +3),\\&(x-u)^{-3}:\ \ {\dot{u}}\left( \frac{1}{4}\gamma ^2-\gamma \right) =-\frac{3}{4}\gamma ^2 {\dot{u}}. \end{aligned}$$

The first equation gives \(\gamma =\{0,1,3\}\), while the second one \(\gamma =\{0,1\}\). Therefore, the nontrivial solution is

$$\begin{aligned} \gamma =1. \end{aligned}$$

Similarly, the case \(b=(x-u_1(t))^{\gamma _1}(x-u_2(t))^{\gamma _2}\) leads to the following conditions:

$$\begin{aligned} \begin{array}{l} (x-u_1)^{-4}: \frac{1}{4}\gamma _1(\gamma _1^2-4\gamma _1+3)=0,\\ (x-u_1)^{-3}:\frac{1}{2}\frac{\gamma _1(\gamma _1-1)}{u_1-u_2}\left( 2{\dot{u}}_1(u_1-u_2)+\gamma _2\right) , \\ \ \\ (x-u_2)^{-4}: \frac{1}{4}\gamma _2(\gamma _2^2-4\gamma _2+3)=0,\\ (x-u_2)^{-3}: \frac{1}{2}\frac{\gamma _2(\gamma _2-1)}{u_2-u_1}\left( 2{\dot{u}}_2(u_2-u_1)+\gamma _1\right) , \end{array} \end{aligned}$$

which give

$$\begin{aligned} \gamma _1=\gamma _2=1. \end{aligned}$$

1.4 \(b=\exp \Big (\left( z/u(t)\right) ^\gamma \Big )\)

First, it can be shown that \(\gamma =0,1,2,3\)...

Consider \(\gamma =1\). Substituting \(b(z,u(t),t)=\exp (z/u(t))\) into (3.6), we get

$$\begin{aligned} \left( -\frac{{\dot{u}}^2}{u^3}+\frac{1}{2}\frac{\ddot{u}}{u^2} \right) x+V_t-H_t-\frac{1}{2}\frac{{\dot{u}}}{u^3}-\frac{1}{2u}{V'}_x=0. \end{aligned}$$
(A.5)

Applying \(\partial _x^2\) gives

$$\begin{aligned} V''_t-\frac{1}{2u}V'''=0. \end{aligned}$$

Notice that the function \({U}(z,{\dot{u}},{ u},t)\) satisfies the same equation even if we do not impose the condition \({U}=V(x,t)-H({\dot{u}},{ u},t)\). Under assumption \({U}=V(x,t)-H({\dot{u}},{ u},t)\), we have

$$\begin{aligned} V'''=V''_t=0. \end{aligned}$$

This leads to

$$\begin{aligned} V(x,t)=\frac{\alpha }{2}x^2+b(t)x+c(t),\ \ \alpha =\hbox {const}. \end{aligned}$$

Plugging it back into (A.5), we obtain the following two equations (as coefficients behind \(x^1\) and \(x^0\)):

$$\begin{aligned} \left\{ \begin{array}{l} {\ddot{u}}=2\frac{{\dot{u}}^2}{u}-2{\dot{b}}u^2+\alpha u,\\ H_t=\frac{1}{2}\frac{{\dot{u}}^2}{u^3}+{\dot{c}}-\frac{1}{2u}b. \end{array}\right. \end{aligned}$$

1.5 Case 2 in (4.5)

Here it may be useful to use variable \(u=u_1-\frac{1}{2}\sqrt{c-4t}\) (then \(\dot{u}=\dot{u}_1+\frac{1}{\sqrt{c-4t}}\)). Then

$$\begin{aligned} H=\frac{1}{2} \left( \dot{u}_1+\frac{1}{\sqrt{c-4t}}\right) ^2+V(u_1)=\frac{1}{2}\dot{u}^2+V\left( u+\frac{1}{2}\sqrt{c-4t}\right) , \end{aligned}$$
(A.6)

and, therefore,

$$\begin{aligned}&V_t(x)-H_t -\frac{1}{2(x-u_1)}\Big (V'(x)-\ddot{u}_1-2(c-4t)^{-\frac{3}{2}}-2\frac{V(x)-V(u_1)}{x-u_1}\Big ) \\&\quad -\frac{1}{2(x-u_2)}\Big (V'(x)-\ddot{u}_2+2(c-4t)^{-\frac{3}{2}}-2\frac{V(x)-V(u_2)}{x-u_2}\Big )=0 \end{aligned}$$

Cancellation of the first-order poles at \(x=u_{1,2}\) yields \( \ddot{u}_1=-V'(u_1)-2(c-4t)^{-\frac{3}{2}}\). On this equation, \(H_t=V_t(u_1)-V'(u_1)\frac{1}{\sqrt{c-4t}}\). Thus we arrive at

$$\begin{aligned}&V_t(x)-V_t(u_1)+V'(u_1)\frac{1}{\sqrt{c-4t}}-\frac{1}{2(x-u_1)} \Big (V'(x)+V'(u_1)-2\frac{V(x)-V(u_1)}{x-u_1}\Big )\nonumber \\&\quad -\frac{1}{2(x-u_2)}\Big (V'(x)+V'(u_1)-2\frac{V(x)-V(u_2)}{x-u_2}\Big )=0. \end{aligned}$$
(A.7)

By analogy with (4.7), we get

$$\begin{aligned} \left\{ \begin{array}{l} V_{t}^\mathrm{V}(x)=0, \\ -20V_{t}^\mathrm{IV}(x)+V^\mathrm{VI}(x)=0, \\ -13V^\mathrm{V}(x)+120V_{t}^\mathrm{III}(x)=0,\\ V^\mathrm{IV}(x)-6V_{t}^\mathrm{II}(x)=0,\\ 6\partial _z V_t(x)-V^\mathrm{III}(x)+\Big (-\frac{16}{13}t+\frac{4}{13}\Big )V_{t}^\mathrm{III}(x)=0. \end{array}\right. \end{aligned}$$
(A.8)

From the two upper equations, it follows that \(V(x)\) is the 6-th degree polynomial. Plugging it into (A.8) drops the degree to 4 (similar to the Painlevé I, II cases). However, after substituting it back into (A.7), we get only the trivial solution

$$\begin{aligned} V(x,t)=f(t). \end{aligned}$$

Appendix B: Elliptic Functions

Here we give a short version of the Appendix in [58].

1.1 Theta-functions

The Jacobi’s theta-functions \(\vartheta _a (z)= \vartheta _a (z|\tau )\), \(a=0,1,2,3\), are defined by the formulas

$$\begin{aligned} \vartheta _1(z)= & {} -\displaystyle {\sum _{k\in {{\mathbb Z}}}} \exp \left( \pi i \tau \left( k+\frac{1}{2}\right) ^2 +2\pi i \left( z+\frac{1}{2}\right) \left( k+\frac{1}{2}\right) \right) , \\ \vartheta _2(z)= & {} \displaystyle {\sum _{k\in {{\mathbb Z}}}} \exp \left( \pi i \tau \left( k+\frac{1}{2}\right) ^2 +2\pi i z\left( k+\frac{1}{2}\right) \right) , \\ \vartheta _3(z)= & {} \displaystyle {\sum _{k\in {{\mathbb Z}}}} \exp \left( \pi i \tau k^2 +2\pi i z k \right) , \\ \vartheta _0(z)= & {} \displaystyle {\sum _{k\in {{\mathbb Z}}}} \exp \left( \pi i \tau k^2 +2\pi i \left( z+\frac{1}{2}\right) k\right) , \end{aligned}$$

where \(\tau \) is a complex parameter (the modular parameter) such that \(\mathrm{Im}\, \tau >0\). Set

$$\begin{aligned} \omega _0 =0, \quad \omega _1 =\frac{1}{2}, \quad \omega _2=\frac{1+\tau }{2}, \quad \omega _3 =\frac{\tau }{2}; \end{aligned}$$

then the function \(\vartheta _a(z)\) has simple zeros at the points of the lattice \(\omega _{a-1}+{\mathbb {Z}}+{\mathbb {Z}}\tau \) (here \(\omega _a \equiv \omega _{a+4}\)).

1.2 Weierstrass \(\wp \)-function

The Weierstrass \(\wp \)-function is defined as

$$\begin{aligned} \wp (z)= -\partial _z^2 \log \vartheta _1 (z)-2\eta , \end{aligned}$$

where

$$\begin{aligned} \eta = -\, \frac{1}{6}\, \frac{\vartheta _{1}^{'''}(0)}{\vartheta _1' (0)}= -\, \frac{2\pi i}{3}\, \partial _{\tau } \log \theta _1'(0|\tau ). \end{aligned}$$

Its derivative is given by

$$\begin{aligned} \wp '(z)=-\, \frac{2\, (\vartheta _1'(0))^3}{\vartheta _2(0)\vartheta _3(0) \vartheta _0(0)}\, \frac{\vartheta _2(z)\vartheta _3(z) \vartheta _0(z)}{\vartheta _{1}^{3}(z)}. \end{aligned}$$

The values at the half-periods

$$\begin{aligned} e_1 =\wp (\omega _1), \quad e_2 =\wp (\omega _2), \quad e_3 =\wp (\omega _3) \end{aligned}$$

have special properties. For example, \(e_1 +e_2 +e_3=0\). The differences \(e_j-e_k\) can be represented in two different ways:

$$\begin{aligned}&\displaystyle {e_1 -e_2 =\pi ^2 \vartheta _0^4 (0)\, =\, 4\pi i \, \partial _{\tau } \log \frac{\vartheta _3 (0)}{\vartheta _2 (0)}},\\&\displaystyle {e_1 -e_3 =\pi ^2 \vartheta _3^4 (0)\, =\, 4\pi i \, \partial _{\tau } \log \frac{\vartheta _0 (0)}{\vartheta _2 (0)}},\\&\displaystyle {e_2 -e_3 =\pi ^2 \vartheta _2^4 (0)\, =\, 4\pi i \, \partial _{\tau } \log \frac{\vartheta _0 (0)}{\vartheta _3 (0)}}. \end{aligned}$$

The second representation is a consequence of the heat equation (B.3) (see below):

$$\begin{aligned} e_k = 4\pi i \, \partial _{\tau }\Bigl ( \frac{1}{3}\, \log \vartheta _1'(0) -\log \vartheta _{k+1}(0)\Bigr ) \end{aligned}$$

or

$$\begin{aligned} \pi i \, \partial _{\tau }\log (e_j -e_k)=-e_l -2\eta , \end{aligned}$$

where \(\{jkl\}\)—any cyclic permutation of \(\{123\}\). The \(\wp \)-function satisfies the differential equation

$$\begin{aligned} (\wp '(z))^2 =4 (\wp (z)-e_1)(\wp (z)-e_2)(\wp (z)-e_3). \end{aligned}$$

We also mention the formulae

$$\begin{aligned} \wp (z)-e_k =\frac{(\vartheta _1'(0))^2}{\vartheta _{k+1}^2(0)}\, \frac{\vartheta _{k+1}^2(z)}{\vartheta _1^2(z)}. \end{aligned}$$

1.3 Eisenstein functions and \(\Phi \)-function

By definition,

$$\begin{aligned} E_1(z)=\partial _z\log \vartheta _1(z), \quad \quad E_2(z)=-\partial _zE_1(z)= -\partial _z^2\log \vartheta _1(z)=\wp (z)+2\eta . \end{aligned}$$

Behavior on the lattice:

$$\begin{aligned} E_1(z+1)= & {} E_1(z),\ \ E_1(z+\tau )=E_1(z)-2\pi i,\end{aligned}$$
(B.1)
$$\begin{aligned} E_2(z+1)= & {} E_2(z),\ \ E_2(z+\tau )=E_2(z). \end{aligned}$$
(B.2)

The local expansion near \(z=0\):

$$\begin{aligned} E_1(z)=\frac{1}{z}-2\eta z + \cdots ,\quad \quad ~~E_2(z) =\frac{1}{z^2}+2\eta +\cdots \end{aligned}$$

Values at half-periods:

$$\begin{aligned} E_1(\omega _j)=-2\pi i\partial _\tau \omega _j, \end{aligned}$$

and, therefore,

$$\begin{aligned} E_1(\omega _j)+E_1(\omega _k)=E_1(\omega _j+\omega _k) \end{aligned}$$

holds true for any different \(j,k =1,2,3\).

Another useful function is

$$\begin{aligned} \Phi (u,z)= \frac{\vartheta _1(u+z)\vartheta _1'(0)}{\vartheta _1(u)\vartheta _1(z)}. \end{aligned}$$

It has the following properties:

$$\begin{aligned} \Phi (u,z)= & {} \Phi (z,u),\\ \Phi (-u,-z)= & {} -\Phi (u,z),\\ \Phi (u,z)\Phi (-u,z)= & {} \wp (z)-\wp (u), \\ \Phi (u,z)\Phi (w,z)= & {} \Phi (u+w,z)(E_1(z)+E_1(u)+E_1(w)-E_1(z+u+w)),\\ \Phi (u,z)= & {} \frac{1}{z}+E_1(u)+\frac{z}{2}(E_1^2(u)-\wp (u))+ O(z^2),\\ \partial _z \Phi (u,z)= & {} \Phi (u,z)(E_1(u+z)-E_1(z)). \end{aligned}$$

Behavior on the lattice:

$$\begin{aligned} \Phi (u,z+1)=\Phi (u,z),~~~\Phi (u,z+\tau )=e^{-2\pi i u}\Phi (u,z). \end{aligned}$$

Is is also convenient to introduce

$$\begin{aligned} \varphi _j(z)=e^{2\pi i z\partial _\tau \omega _j}\Phi (z,\omega _j), \quad j=1,2,3, \end{aligned}$$

with properties:

$$\begin{aligned}&\varphi _j^2(z)=\wp (z)-e_j,\ \ \ \varphi _j^2(z)-\varphi _k^2(z)=e_k-e_j, \\&\varphi _j(z)\varphi _k(z)=\varphi _l(z)(E_1(z)+E_1(\omega _l)-E_1(z+\omega _l)),\\&\partial _z\varphi _j(z)=\varphi _j (z)\Bigl [ E_1(z+\omega _j) -E_1(\omega _j)-E_1(z)\Bigr ]=-\varphi _k(z)\varphi _l(z), \end{aligned}$$

where \(j,k,l\) is any cyclic permutation of \(1,2,3\).

1.4 Heat equation and related formulae

All the theta-functions satisfy the “heat equation”

$$\begin{aligned} 4\pi i \partial _{\tau }\vartheta _a(z|\tau )= \partial _{z}^{2}\vartheta _a(z|\tau ) \end{aligned}$$
(B.3)

or

$$\begin{aligned} 2\partial _{t}\vartheta _a(z )=\partial _{z}^{2}\vartheta _a(z)\ \ \ \displaystyle {t=\frac{\tau }{2\pi i}}. \end{aligned}$$

One can also introduce the “heat coefficient” \(\displaystyle {\kappa =\frac{1}{2\pi i}}\) and rewrite the heat equation in the form \(\displaystyle {\partial _{\tau }\vartheta _a(z|\tau )= \frac{\kappa }{2}\, \partial _{z}^{2}\vartheta _a(z|\tau )}\). All formulas for derivatives of elliptic functions with respect to the modular parameter are based on the heat equation.

The \(\tau \)-derivatives are given by the following:

Proposition B.1

The identities

$$\begin{aligned} \partial _\tau \Phi (z,u)=\kappa \partial _z\partial _u\Phi (z,u), \end{aligned}$$
(B.4)
$$\begin{aligned} \partial _\tau E_1(z)= & {} \frac{\kappa }{2}\, \partial _z(E_1^2(z)-\wp (z)),\\ \partial _\tau E_2(z)= & {} \kappa E_1(z)E_2'(z)-\kappa E_2^2(z)+\frac{\kappa }{2}\, \wp ''(z), \end{aligned}$$

with the “heat coefficient” \(\displaystyle {\kappa =\frac{1}{2\pi i}}\), hold true.Footnote 5

The proof can be found in [58].

Introduce now

$$\begin{aligned} X(x,t)=\frac{\wp (x)-e_1}{e_2 -e_1}, \quad \quad T(t)=\frac{e_3 -e_1}{e_2 -e_1}=\left( \frac{\vartheta _3(0|\tau )}{\vartheta _0 (0|\tau )}\right) ^4. \end{aligned}$$

Then we have

$$\begin{aligned} X=\frac{\wp (x)-e_1}{e_2 -e_1}, \quad \quad X\! - \! 1 =\frac{\wp (x)-e_2}{e_2 -e_1}, \quad \quad X\! - \! T =\frac{\wp (x)-e_3}{e_2 -e_1}, \end{aligned}$$

and, therefore,

$$\begin{aligned} \left( \frac{\partial X}{\partial x}\right) ^2= & {} 4(e_2 -e_1)\, X(X-1)(X-T),\\ \frac{\partial ^2 X}{\partial x^2}= & {} 2(e_2 -e_1)\, X(X-1)(X-T)\left( \frac{1}{X}+ \frac{1}{X-1}+\frac{1}{X-T}\right) . \end{aligned}$$

Let us give some more relations:

$$\begin{aligned} \displaystyle {\frac{(e_2 -e_1)T}{X}}= & {} \wp (x+\omega _1) -e_1,\nonumber \\ \displaystyle {-\, \frac{(e_2 -e_1)(T-1)}{X-1}}= & {} \wp (x+\omega _2) -e_2,\nonumber \\ \displaystyle {\frac{(e_2 -e_1)T(T-1)}{X-T}}= & {} \wp (x+\omega _3) -e_3,\end{aligned}$$
(B.5)
$$\begin{aligned} \frac{\partial T}{\partial t}= & {} 2(e_2 -e_1) T(T-1), \end{aligned}$$
(B.6)
$$\begin{aligned} \partial _T(e_2-e_1)= & {} \partial _t(e_2-e_1)\frac{1}{T_t}=-\frac{e_3+2\eta _1}{T(T-1)}. \end{aligned}$$
(B.7)

The following identity holds trueFootnote 6:

$$\begin{aligned} \frac{\partial X}{\partial t}=\frac{\partial X}{\partial x}\, \, \frac{\vartheta _0'(x)}{\vartheta _0(x)} \end{aligned}$$

or

$$\begin{aligned} \partial _\tau X =\kappa \partial _z X\left( E_1(z+\omega _3)-E_1(\omega _3)\right) =\kappa \, \partial _z X\, \partial _z \log \theta _0(z). \end{aligned}$$
(B.8)

Appendix C: \(\mathbf{U}{-}\mathbf{V}\) pairs for PI–PV

Here we list the \(\mathbf{U}{-}\mathbf{V}\) pairs for PI–PV satisfying zero curvature equation (1.2) and admitting the quantum Painlevé–Calogero correspondence. The PVI case is too complicated. In principle, it is gauge equivalent to different types of known elliptic \(2\times 2\) \(\mathbf{U}{-}\mathbf{V}\) pairs (see [32, 60]) which are in their turn related by Hecke transformations [33, 34].

Painlevé I

$$\begin{aligned} 4\ddot{u}= & {} 6u^2 +t, \\ H_\mathrm{I}(p, u)= & {} \frac{p^2}{2} -\frac{u^3}{2} -\frac{tu}{4}, \\ \mathbf{U}(x,t)= & {} \left( \begin{array}{cc} \dot{u} &{} x-u\\ &{}\\ x^2 \! +\! xu \! +\! u^2 \! +\! \frac{1}{2}\,t &{} -\dot{u} \end{array}\right) ,\quad \quad \mathbf{V} (x,t) =\left( \begin{array}{cc} 0&{} \frac{1}{2}\\ &{}\\ \frac{1}{2}\, x +u &{} 0 \end{array}\right) . \end{aligned}$$

Painlevé II

$$\begin{aligned} \ddot{u}= & {} 2u^3 +tu-\alpha , \\ H_\mathrm{II}(p, u)= & {} \displaystyle {\frac{p^2}{2} -\frac{1}{2} \left( u^2+\frac{t}{2}\right) ^2 +\alpha u},\\ \mathbf{U}= & {} \left( \begin{array}{cc} x^2+\dot{u} -u^2 &{} x-u\\ (x+u)(2u^2 \! -\! 2\dot{u} \! +\! t)\! -\! 2\alpha \! - \! 1 &{} -x^2\! -\! \dot{u} \! +\! u^2 \end{array}\right) ,\\ \mathbf{V}= & {} \left( \begin{array}{cc} \frac{x+u}{2}&{} \frac{1}{2}\\ u^2 \! - \! \dot{u} \! +\! \frac{t}{2} &{} -\, \frac{x+u}{2}\end{array}\right) . \end{aligned}$$

Painlevé III

$$\begin{aligned}&2\ddot{u} = e^t(\alpha e^{2u} +\beta e^{-2u}) + e^{2t}(\gamma e^{4u} +\delta e^{-4u}),\\&H_\mathrm{III}(p, u)= \displaystyle {\frac{p^2}{2} -\nu ^2 e^t \cosh (2u-2\varrho ) -\mu ^2 e^{2t}\cosh (4u)},\\&\mathbf{U}_{11} = \dot{u}e^{2u-2x}+\theta \Big (1-e^{2u-2x} \Big )+\frac{1}{2}\Big (e^{2x+t}-e^{2u-2x}-e^{4u+t-2x}+1\Big ),\\&\mathbf{U}_{12}= e^{\frac{t}{2}}\Big (e^{-u+x}-e^{u-x}\Big ),\\&\mathbf{U}_{21}=\dot{u}^2 e^{u-\frac{t}{2}-3x}\Big (e^{2x}+e^{2u}\Big ) -\dot{u}e^{u-\frac{t}{2}-3x}\Big (e^{2x}+e^{2u+t+2x}+(1+2\theta )e^{2u} +e^{4u+t}\Big )\\&\quad + \theta ^2\left( -e^{u-\frac{t}{2}-x}+e^{3u-\frac{t}{2}-3x} \right) +\theta \left( e^{3u-\frac{t}{2}-3x}+e^{5u+\frac{t}{2}-3x}\right) +4\lambda e^{-u+\frac{t}{2}-x}\\&\quad - 4\chi \left( e^{-3u+\frac{3t}{2}-x}+e^{-u+\frac{3t}{2}-3x} \right) \\&\quad + \frac{1}{4}\Big ( e^{u-\frac{t}{2}-x} +2e^{3u+\frac{t}{2}-x}+e^{5u+\frac{3t}{2}-x}+e^{3u-\frac{t}{2}-3x} +2e^{5u+\frac{t}{2}-3x}+e^{7u+\frac{3t}{2}-3x}\Big ).\\&\mathbf{V}_{11}=-\frac{1}{2}\dot{u}\Big (e^{2u\!-\!2x}\!+\!1\Big ) +\frac{\theta }{2}\Big (1\!+\!e^{2u\!-\!2x}\Big ) \!+\!\frac{1}{4}\Big ( e^{2x\!+\!t}\!+\!e^{2u\!-\!2x}\!+\!e^{4u\!+\!t\!-\!2x}\!+\!1\!+\!2e^{2u\!+\!t}\Big ),\\&\mathbf{V}_{12}= \frac{1}{2}e^{\frac{t}{2}}\Big (e^{-u+x}+e^{u-x}\Big ),\\&\mathbf{V}_{21}=\frac{1}{2}\dot{u}^2 e^{u-\frac{t}{2}-3x}\Big (e^{2x}\!-\!e^{2u}\Big ) -\frac{1}{2}\dot{u}e^{u-\frac{t}{2}-3x}\Big (e^{2x}\!+\!e^{2u+t+2x}\!-\!(1+2\theta )e^{2u} \!-\!e^{4u+t}\Big ) \\&\quad - \frac{\theta ^2}{2}\left( e^{u-\frac{t}{2}-x}+e^{3u-\frac{t}{2}-3x} \right) -\frac{\theta }{2}\left( e^{3u-\frac{t}{2}-3x}+e^{5u+\frac{t}{2}-3x}\right) +2\lambda e^{-u+\frac{t}{2}-x}\\&\quad - 2\chi \left( e^{-3u+\frac{3t}{2}-x}-e^{-u+\frac{3t}{2}-3x} \right) \\&\quad + \frac{1}{8}\Big ( e^{u-\frac{t}{2}-x} +2e^{3u+\frac{t}{2}-x}+e^{5u+\frac{3t}{2}-x}-e^{3u-\frac{t}{2}-3x}-2e^{5u+\frac{t}{2}-3x}-e^{7u+\frac{3t}{2}-3x}\Big ). \end{aligned}$$

Notice that an interesting equation holds:

$$\begin{aligned} \partial _x\Big (\mathbf{U}_{21}e^{2x} \Big )=2 \Big (\mathbf{V}_{21}e^{2x} \Big ) \end{aligned}$$

(in this case \(X=e^{2x}\)). Therefore, some relation exists between \(\mathbf{U}_{21}\) and \(\mathbf{V}_{21}\) elements just as for (12)-elements. For example, for PII we have \(\partial _x \mathbf{U}_{21}=2 \mathbf{V}_{21}\).

Truncated Painlevé III [2]: \(\ddot{u} =2\nu ^2 e^t\sinh (2u )\)

$$\begin{aligned} \mathbf{U}(x,t)= & {} \left( \begin{array}{cc} \dot{u} &{}2\nu e^{t/2}\sinh (x-u )\\ 2\nu e^{t/2}\sinh (x+u ) &{} -\dot{u} \end{array}\right) ,\\ \mathbf{V }(x,t)= & {} \left( \begin{array}{cc} 0&{} \nu e^{t/2}\cosh (x-u )\\ \nu e^{t/2} \cosh (x+u )&{} 0 \end{array}\right) . \end{aligned}$$

Painlevé IV

$$\begin{aligned} \ddot{u}= & {} \frac{3}{4}\, u^5 +2tu^3 + (t^2 -\alpha ) u +\frac{\beta }{2u^3},\\ H_\mathrm{IV}^{(\alpha , \beta )}(p, u)= & {} \displaystyle {\frac{p^2}{2} -\frac{u^6}{8} -\frac{tu^4}{2} -\frac{1}{2}\left( t^2 -\alpha \right) u^2 +\frac{\beta }{4u^2}.}\\ \mathbf{U}= & {} \left( \begin{array}{cc}\displaystyle { \frac{x^3}{2}\! +\! tx \! +\! \frac{Q+\frac{1}{2}}{x}}&{}x^2 -u^2\\ \displaystyle {\frac{Q^2+\frac{\beta }{2}}{u^2x^2}\! -\! Q\! -\! \alpha \! -\! 1} &{} \,\,\,\,\displaystyle { -\frac{x^3}{2}\! -\! tx \! -\! \frac{Q+\frac{1}{2}}{x}} \end{array}\right) ,\\ \mathbf{V}= & {} \left( \begin{array}{cc} \displaystyle { \frac{x^2+u^2}{2} + t}&{}\,\, x\\ \displaystyle { -\, \frac{Q+\alpha +1}{x}}&{}\,\,\,\,\,\,\,\, \displaystyle { -\frac{x^2 +u^2}{2} - t} \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned} Q=u\dot{u} -\frac{u^4}{2}-tu^2. \end{aligned}$$

Painlevé V

$$\begin{aligned} \ddot{u}= & {} -\frac{2\alpha \cosh u}{\sinh ^3 u}- \frac{2\beta \sinh u}{\cosh ^3 u} -\gamma e^{2t}\sinh (2u) -\frac{1}{2}\, \delta e^{4t}\sinh (4u),\nonumber \\ H_\mathrm{V}(p, u)= & {} {\frac{p^2}{2}-\, \frac{\alpha }{\sinh ^2 x} -\, \frac{\beta }{\cosh ^2 x}+\frac{\gamma e^{2t}}{2} \cosh (2x)+\frac{\delta e^{4t}}{8}\cosh (4x)},\nonumber \\ \mathbf{U}_{11}= & {} \dot{u}\frac{\sinh (2u)}{\sinh (2x)}-\frac{2\sigma }{\sinh (2x)}\Big ( \cosh (2x)-\cosh (2u)\Big )\nonumber \\&+\frac{e^{2t}}{4\sinh (2x)}\Big ( \cosh (4x)-\cosh (4u)\Big )+\coth (2x).\end{aligned}$$
(C.1)
$$\begin{aligned} \mathbf{U}_{12}= & {} e^t\Big ( \cosh (2x)-\cosh (2u)\Big ).\end{aligned}$$
(C.2)
$$\begin{aligned} \mathbf{U}_{21}= & {} \dot{u}^2\frac{e^{-t}}{\sinh ^2(2x)}\Big ( \cosh (2u)+\cosh (2x)\Big )\nonumber \\&+\,\dot{u}\frac{\sinh (2u)}{\sinh ^2(2x)}\Big ( 4\sigma e^{-t}-e^t \Big [\cosh (2u)+\cosh (2x)\Big ] \Big )\nonumber \\&+\,8\sigma ^2e^{-t}\frac{\coth ^2(u)}{\sinh ^2(2x)}\Big ( \sinh ^2(u)-\cosh ^2(x)\Big )-2\sigma e^t\frac{\sinh ^2(2u)}{\sinh ^2(2x)}\nonumber \\&-2e^{-t}\frac{\xi ^2+2\xi \sigma }{\sinh ^2(u)\sinh ^2(x)} +2e^{-t}\frac{\zeta ^2}{\cosh ^2(u)\cosh ^2(x)}\nonumber \\&+\, \frac{e^{3t}\sinh ^2(2u)}{4\sinh ^2(2x)}\Big ( \cosh (2u)+\cosh (2x)\Big ).\end{aligned}$$
(C.3)
$$\begin{aligned} \mathbf{V}_{11}= & {} \frac{1}{2}e^{2t}\Big ( \cosh (2x)+\cosh (2u)\Big )-2\sigma +\frac{1}{2},\nonumber \\ \mathbf{V}_{12}= & {} e^t\sinh (2x),\nonumber \\ \mathbf{V}_{21}= & {} \frac{e^{-t}}{\sinh (2x)}\Big ( \Big (\dot{u}^2\!-\!\frac{1}{2}\dot{u}e^{2t}\sinh (2u)\Big )^2\! +\!\frac{4\zeta ^2}{\cosh ^2(u)}\nonumber \\&-\,4\frac{\xi ^2\!+\!2\xi \sigma }{\sinh ^2(u)}\! -\!4\sigma ^2\coth ^2(u)\Big ). \end{aligned}$$
(C.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabrodin, A., Zotov, A. Classical-Quantum Correspondence and Functional Relations for Painlevé Equations. Constr Approx 41, 385–423 (2015). https://doi.org/10.1007/s00365-015-9284-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-015-9284-4

Keywords

Navigation