Skip to main content
Log in

A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations

  • Published:
Constructive Approximation Aims and scope

Abstract

We investigate the construction of local quasi-interpolation schemes based on a family of bivariate spline functions with smoothness \(r\ge 1\) and polynomial degree \(3r-1\). These splines are defined on triangulations with Powell–Sabin refinement, and they can be represented in terms of locally supported basis functions that form a convex partition of unity. With the aid of the blossoming technique, we first derive a Marsden-like identity representing polynomials of degree \(3r-1\) in such a spline form. Then we present a general recipe to construct various families of smooth quasi-interpolation schemes involving values and/or derivatives of a given function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alfeld, P., Schumaker, L.: Smooth macro-elements based on Powell–Sabin triangle splits. Adv. Comput. Math. 16, 29–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Boor, C.: Algorithms and new trends. B-form basics. In: Farin, G. (ed.) Geometric Modeling. SIAM Publications, Philadelphia (1987)

    Google Scholar 

  3. de Boor, C.: Quasi interpolants and approximation power of multivariate splines. In: Dahmen, W., Gasca, M., Micchelli, C. (eds.) Computation of Curves and Surfaces, pp. 313–345. Kluwer, Dordrecht (1990)

    Chapter  Google Scholar 

  4. de Boor, C.: Multivariate piecewise polynomials. Acta Numer. 2, 65–109 (1993)

    Article  Google Scholar 

  5. Chui, C., Hecklin, G., Nürnberger, G., Zeilfelder, F.: Optimal Lagrange interpolation by quartic \(C^1\)-splines on triangulations. J. Comput. Appl. Math. 216, 344–363 (2008)

  6. Chung, K., Yao, T.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14, 735–743 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farin, G.: Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986)

    Article  MathSciNet  Google Scholar 

  9. Lai, M., Schumaker, L.: Macro-elements and stable local bases for splines on Powell–Sabin triangulations. Math. Comput. 72, 335–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lai, M., Schumaker, L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and its Applications 110. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  11. Lamnii, M., Mraoui, H., Tijini, A.: Construction of quintic Powell–Sabin spline quasi-interpolants based on blossoming. J. Comput. Appl. Math. 234, 190–209 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lee, E.: Marsden’s identity. Comput. Aided Geom. Des. 13, 287–305 (1996)

    Article  MATH  Google Scholar 

  13. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Comput. Math. 26, 283–304 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nürnberger, G., Rayevskaya, V., Schumaker, L., Zeilfelder, F.: Local Lagrange interpolation with bivariate splines of arbitrary smoothness. Constr. Approx. 23, 33–59 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nürnberger, G., Schumaker, L., Zeilfelder, F.: Lagrange interpolation by \(C^1\) cubic splines on triangulated quadrangulations. Adv. Comput. Math. 21, 357–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nürnberger, G., Zeilfelder, F.: Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121, 125–152 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nürnberger, G., Zeilfelder, F.: Lagrange interpolation by bivariate \(C^1\) splines with optimal approximation order. Adv. Comput. Math. 21, 381–419 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Powell, M., Sabin, M.: Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19, Digital Systems Research Center (1987)

  20. Sablonnière, P.: Error bounds for Hermite interpolation by quadratic splines on an \(\alpha \)-triangulation. IMA J. Numer. Anal. 7, 495–508 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sablonnière, P.: Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. In: de Bruijn, M., Mache, D., Szabados, J. (eds.) Trends and Applications in Constructive Approximation, pp. 229–245. Birkhäuser Verlag, Basel (2005)

    Chapter  Google Scholar 

  22. Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64, 1147–1170 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sbibih, D., Serghini, A., Tijini, A.: Polar forms and quadratic spline quasi-interpolants on Powell–Sabin partitions. Appl. Numer. Math. 59, 938–958 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sbibih, D., Serghini, A., Tijini, A.: Normalized trivariate B-splines on Worsey–Piper split and quasi-interpolants. BIT Numer. Math. 52, 221–249 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38–46 (1993)

    Article  Google Scholar 

  26. Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Speleers, H.: On multivariate polynomials in Bernstein–Bézier form and tensor algebra. J. Comput. Appl. Math. 236, 589–599 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Speleers, H.: Interpolation with quintic Powell–Sabin splines. Appl. Numer. Math. 62, 620–635 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell–Sabin triangulations. Constr. Approx. 37, 41–72 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Speleers, H.: Multivariate normalized Powell–Sabin B-splines and quasi-interpolants. Comput. Aided Geom. Des. 30, 2–19 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers.

Additional information

Communicated by Larry Schumaker.

H. Speleers is a Postdoctoral Fellow of the Research Foundation Flanders (Belgium).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speleers, H. A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations. Constr Approx 41, 297–324 (2015). https://doi.org/10.1007/s00365-014-9248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9248-0

Keywords

Mathematics Subject Classification

Navigation