Skip to main content
Log in

The Jentzsch-Szegő Theorem and Balayage Measures

  • Published:
Constructive Approximation Aims and scope

Abstract

The numerous generalizations of the Jentzsch-Szegő theorem on the location of zeros of Taylor polynomials have been based so far on the extremal properties satisfied by the corresponding approximants. We do away with those kinds of assumptions and prove the theorem for a general class of interpolating polynomials. This is possible thanks to the discovery presented here that the limit distribution of the zeros of the interpolants is governed by a balayage measure depending on the distribution of the interpolation points and the region of analyticity of the function being approximated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Andreivskii, V.V., Blatt, H.-P.: Discrepancy of Signed Measures and Polynomial Approximation. Springer, New York (2001)

    Google Scholar 

  2. Bello Hernández M., de la Calle Ysern, B.: Meromorphic continuation of functions and arbitrary distribution of interpolation points. J. Math. Anal. Appl. 403, 107–119 (2013)

  3. Blatt, H.-P., Blatt, S., Luh, W.: On a generalization of Jentzsch’s theorem. J. Approx. Theory 159, 26–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blatt, H.-P., Kovacheva, R.K.: Growth behavior and zero distribution of rational approximants. Constr. Approx. 34, 393–420 (2011)

  5. Blatt, H.-P., Saff, E.B.: Behavior of zeros of polynomials of near best approximation. J. Approx. Theory 46, 323–344 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blatt, H.-P., Saff, E.B., Simkani, M.: Jentzsch-Szegő type theorems for the zeros of best approximants. J. Lond. Math. Soc. 2(38), 307–316 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dvoretzky, A.: On sections of power series. Ann. Math. 2(51), 643–696 (1950)

    Article  MathSciNet  Google Scholar 

  8. Edrei, A.: Angular distribution of the zeros of Padé polynomials. J. Approx. Theory 24, 251–265 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gehlen, W., Luh, W.: On the sharpness of Jentzsch-Szegő-type theorems. Arch. Math. (Basel) 63, 33–38 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grothmann, R.: On the zeros of sequences of polynomials. J. Approx. Theory 61, 351–359 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jentzsch, R.: Untersuchungen zur Theorie der Folgen analytischer Funktionen. Acta Math. 41, 219–251 (1918)

    Article  MathSciNet  Google Scholar 

  12. Krylov, V.I.: Approximate Calculation of Integrals. The Macmillan Company, New York (1962)

    MATH  Google Scholar 

  13. Mhaskar, H.N., Saff, E.B.: The distribution of zeros of asymptotically extremal polynomials. J. Approx. Theory 65, 279–300 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ransford, T.: Potential Theory in the Complex Plane. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  15. Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys. 46, 224–243 (1901)

    MATH  Google Scholar 

  16. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. A Series of Comprehensive Studies in Math, vol. 316. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  17. Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  18. Szegő, G.: Über die Nullstellen von Polynomen, die in einem Kreis gleichmäßig konvergieren. Sitzungsber. Berl. Math. Ges. 21, 59–64 (1922)

    Google Scholar 

  19. Walsh, J.L.: Note on the degree of convergence of sequences of analytic functions. Trans. Amer. Math. Soc. 47, 293–304 (1940)

    Article  MathSciNet  Google Scholar 

  20. Walsh, J.L.: Overconvergence, degree of convergence, and zeros of sequences of analytic functions. Duke Math. J. 13, 195–234 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  21. Walsh, J.L.: The analogue for maximally convergent polynomials of Jentzsch’s theorem. Duke Math. J. 26, 605–616 (1959)

    Article  MATH  Google Scholar 

  22. Warner, D.D.: An extension of Saff’s theorem on the convergence of interpolating rational functions. J. Approx. Theory 18, 108–118 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank an anonymous referee for the remark on best approximations that appears in the penultimate paragraph of Sect. 1. This work was supported by Dirección General de Investigación, Ministerio de Educación y Ciencia, under Grant MTM2009-14668-C02-02 and by Universidad Politécnica de Madrid through Research Group “Constructive Approximation Theory and Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo de la Calle Ysern.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Calle Ysern, B. The Jentzsch-Szegő Theorem and Balayage Measures. Constr Approx 40, 307–327 (2014). https://doi.org/10.1007/s00365-014-9240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9240-8

Keywords

Mathematics Subject Classification

Navigation