Skip to main content

Advertisement

Log in

The Hardy–Rellich Inequality and Uncertainty Principle on the Sphere

  • Published:
Constructive Approximation Aims and scope

An Erratum to this article was published on 12 March 2015

Abstract

Let \(\Delta _0\) be the Laplace–Beltrami operator on the unit sphere \(\mathbb {S}^{d-1}\) of \({\mathbb R}^d\). We show that the Hardy–Rellich inequality of the form

$$\begin{aligned} \mathop \int \limits _{\mathbb {S}^{d-1}} \left| f (x)\right| ^2 \mathrm{d}{\sigma }(x) \le c_d \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) \left| (-\Delta _0)^{\frac{1}{2}}f(x) \right| ^2 \mathrm{d}{\sigma }(x) \end{aligned}$$

holds for \(d =2\) and \(d \ge 4\) but does not hold for \(d=3\) with any finite constant, and the optimal constant for the inequality is \(c_d = 8/(d-3)^2\) for \(d =2, 4, 5,\) and, under additional restrictions on the function space, for \(d\ge 6\). This inequality yields an uncertainty principle of the form

$$\begin{aligned} \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) |f(x)|^2 \mathrm{d}{\sigma }(x) \mathop \int \limits _{\mathbb {S}^{d-1}}\left| \nabla _0 f(x)\right| ^2 \mathrm{d}{\sigma }(x) \ge c'_d \end{aligned}$$

on the sphere for functions with zero mean and unit norm, which can be used to establish another uncertainty principle without zero mean assumption, both of which appear to be new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, New York (2013)

  2. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Eilertsen, S.: On weighted fractional integral inequalities. J. Funct. Anal. 185, 342–366 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  6. Lieb, E.H.: Sharp constants in the hardy–littlewood–sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Applied Mathematical Sciences, vol. 129. Springer, New York (1998)

    Book  Google Scholar 

  8. Narcowich, F.J., Ward, J.D.: Wavelets associated with periodic basis functions. Appl. Comput. Harmon. Anal. 3, 324–336 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rösler, M., Voit, M.: An uncertainty principle for ultraspherical expansions. J. Math. Anal. Appl. 209, 624–634 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Samko, S.: Best constant in the weighted hardy inequality: the spatial and spherical versions. Fract. Calc. Appl. Anal. 8, 39–52 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Selig, K.: Uncertainty principles revisited. Electron. Trans. Numer. Anal. 14, 165–177 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Strichartz, R.S.: Uncertainty principles in harmonic analysis. J. Funct. Anal. 84, 97–114 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Szego, G.: Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Society Colloquium Publication, Providence, RI (1975)

    Google Scholar 

  14. Thanagavelu, S.: An Introduction to the Uncertainty Principle. Birkhuser, Boston (2004)

    Book  Google Scholar 

  15. Yafaev, D.: Sharp constants in the Hardy–Rellich inequalities. J. Funct. Anal. 168, 121–144 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work of the first author was supported in part by NSERC Canada under Grant RGPIN 311678-2010. The work of the second author was supported in part by NSF Grant DMS-1106113 and a Grant from the Simons Foundation (# 209057 to Y. Xu)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu.

Additional information

Communicated by Pencho Petrushev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, F., Xu, Y. The Hardy–Rellich Inequality and Uncertainty Principle on the Sphere. Constr Approx 40, 141–171 (2014). https://doi.org/10.1007/s00365-014-9235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9235-5

Keywords

Mathematics Subject Classification

Navigation