Skip to main content
Log in

On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection

  • Published:
Constructive Approximation Aims and scope

An Erratum to this article was published on 28 September 2015

Abstract

Newest vertex bisection (NVB) is a popular local mesh-refinement strategy for regular triangulations that consist of simplices. For the 2D case, we prove that the mesh-closure step of NVB, which preserves regularity of the triangulation, is quasi-optimal and that the corresponding L 2-projection onto lowest-order Courant finite elements (P1-FEM) is always H 1-stable. Throughout, no additional assumptions on the initial triangulation are imposed. Our analysis thus improves results of Binev et al. (Numer. Math. 97(2):219–268, 2004), Carstensen (Constr. Approx. 20(4):549–564, 2004), and Stevenson (Math. Comput. 77(261):227–241, 2008) in the sense that all assumptions of their theorems are removed. Consequently, our results relax the requirements under which adaptive finite element schemes can be mathematically guaranteed to convergence with quasi-optimal rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agouzal, A., Thomas, J.-M.: Une méthode d’éléments finis hybrides en décomposition de domaines. RAIRO, Modél. Math. Anal. Numér. 29(6), 749–764 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Aksoylu, B., Holst, M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each H 1/2-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \(\mathbb{R}^{d}\). ESAIM: M2AN (2013, accepted for publication)

  4. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bramble, J.H., Xu, J.: Some estimates for a weighted L 2 projection. Math. Comput. 56(194), 463–476 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Steinbach, O.: On the stability of the L 2 projection in H 1(Ω). Math. Comput. 71(237), 147–156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen, C.: Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for H 1-stability of the L 2-projection onto finite element spaces. Math. Comput. 71(237), 157–163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C.: An adaptive mesh-refining algorithm allowing for an H 1 stable L 2 projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. RAIRO. Anal. Numér. 9(R-2), 77–84 (1975)

    MATH  Google Scholar 

  11. Crouzeix, M., Thomée, V.: The stability in L p and \(W^{1}_{p}\) of the L 2-projection onto finite element function spaces. Math. Comput. 48(178), 521–532 (1987)

    MATH  Google Scholar 

  12. Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling L 2 errors. Numer. Math. 117(2), 185–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L L 2 and L L . SIAM J. Numer. Anal. 32(3), 706–740 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feischl, M., Karkulik, M., Melenk, M., Praetorius, D.: Quasi-optimal convergence rate for an adaptive boundary element method. SIAM J. Numer. Anal. 51(2), 1327–1348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karkulik, M., Of, G., Praetorius, D.: Convergence of adaptive 3D-BEM for weakly singular integral equations based on isotropic mesh refinement. Numer. Methods Partial Differ. Equ. (2012, accepted for publication)

  16. Karkulik, M., Pavlicek, D., Praetorius, D.: On 2D newest vertex bisection: Optimality of mesh-closure and H 1-stability of L 2-projection. ASC report 10/2012, Vienna University of Technology (2012). arXiv:1210.0367

  17. Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55(3), 275–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16(1), 210–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitchell, W.F.: Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. J. Comput. Appl. Math. 36(1), 65–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME Lectures (2011)

    Google Scholar 

  22. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    MATH  Google Scholar 

  24. Schulz, H., Steinbach, O.: A new a posteriori error estimator in adaptive direct boundary element methods. The Neumann problem. In: Multifield Problems, pp. 201–208. Springer, Berlin (2000)

    Chapter  Google Scholar 

  25. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sewell, E.G.: Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. thesis, Purdue University (1972)

  27. Steinbach, O.: On a hybrid boundary element method. Numer. Math. 84(4), 679–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steinbach, O.: On the stability of the L 2 projection in fractional Sobolev spaces. Numer. Math. 88(2), 367–379 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steinbach, O., Wendland, W.L.: The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9(1–2), 191–216 (1998). Numerical treatment of boundary integral equations

    Article  MathSciNet  MATH  Google Scholar 

  30. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Traxler, C.T.: An algorithm for adaptive mesh refinement in n dimensions. Computing 59(2), 115–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tsogtgerel, G.: Adaptive boundary element methods with convergence rates. Numer. Math. (2012, accepted for publication)

Download references

Acknowledgements

The research of the authors M. Karkulik and D. Praetorius is supported through the FWF project Adaptive Boundary Element Method, funded by the Austrian Science Fund (FWF) under grant P21732, see http://www.asc.tuwien.ac.at/abem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karkulik.

Additional information

Communicated by Wolfgang Dahmen.

Dedicated to Carsten Carstensen on the occasion of his 50th birthday.

An erratum to this article is available at http://dx.doi.org/10.1007/s00365-015-9309-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkulik, M., Pavlicek, D. & Praetorius, D. On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection. Constr Approx 38, 213–234 (2013). https://doi.org/10.1007/s00365-013-9192-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-013-9192-4

Keywords

Mathematics Subject Classification

Navigation