Skip to main content
Log in

Variable dispersion beta regressions with parametric link functions

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper presents a new class of regression models for continuous data restricted to the interval (0, 1), such as rates and proportions. The proposed class of models assumes a beta distribution for the variable of interest with regression structures for the mean and dispersion parameters. These structures consider covariates, unknown regression parameters, and parametric link functions. Link functions depend on parameters that model the relationship between the random component and the linear predictors. The symmetric and asymmetric Aranda-Ordaz link functions are considered in details. Depending on the parameter values, these link functions refer to particular cases of fixed links such as logit and complementary log–log functions. Joint estimation of the regression and link function parameters is performed by maximum likelihood. Closed-form expressions for the score function and Fishers information matrix are presented. Aspects of large sample inferences are discussed, and some diagnostic measures are proposed. A Monte Carlo simulation study is used to evaluate the finite sample performance of point estimators. Finally, a practical application that employs real data is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. When constant mean and dispersion are considered, no regression structures are considered; thus, there are no estimates for \(\lambda _\delta \).

References

  • Adewale AJ, Xu X (2010) Robust designs for generalized linear models with possible overdispersion and misspecified link functions. Comput Stat Data Anal 54(4):875–890

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–726

  • Akaike H (1983) Information measures and model selection. Bull Int Stat Inst 50:277–290

    MathSciNet  MATH  Google Scholar 

  • Andrade ACG (2007) Efeitos da especificação incorreta da função de ligação no modelo de regressão beta. Master’s thesis, Universidade Federal de São Paulo

  • Aranda-Ordaz FJ (1981) On two families of transformations to additivity for binary response data. Biometrika 68(2):357–363

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson A (1981) Two graphical display for outlying and influential observations in regression. Biometrika 68(1):13–20

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson AC (1985) Plots, transformations and regression: an introduction to graphical methods of diagnostic regression analysis. Oxford University Press, New York

    MATH  Google Scholar 

  • Bayer FM, Cribari-Neto F (2017) Model selection criteria in beta regression with varying dispersion. Commun Stat Simul Comput 46(1):729–746

    Article  MathSciNet  MATH  Google Scholar 

  • Colosimo EA, Chalita LVAS, Demétrio CGB (2000) Tests of proportional hazards and proportional odds models for grouped survival data. Biometrics 56(4):1233–1240

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RD (1977) Detection of influential observations in linear regression. Technometrics 19(1):15–18

    MathSciNet  MATH  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc B 49(1):1–39

    MathSciNet  MATH  Google Scholar 

  • Cribari-Neto F, Souza TC (2012) Testing inference in variable dispersion beta regressions. J Stat Comput Simul 82(12):1827–1843

    Article  MathSciNet  MATH  Google Scholar 

  • Cribari-Neto F, Souza TC (2013) Religious belief and intelligence: worldwide evidence. Intelligence 41(5):482–489

    Article  Google Scholar 

  • Czado C (1994) Parametric link modification of both tails in binary regression. Stat Pap 35(1):189–201

    Article  MATH  Google Scholar 

  • Czado C (1997) On selecting parametric link transformation families in generalized linear models. J Stat Plan Inference 61(1):125–139

    Article  MATH  Google Scholar 

  • Czado C, Raftery AE (2006) Choosing the link function and accounting for link uncertainty in generalized linear models using Bayes factors. Stat Pap 47(3):419–442

    Article  MathSciNet  MATH  Google Scholar 

  • Dehbi H, Cortina-Borja M, Geraci M (2014) AOfamilies: Aranda-Ordaz transformation families. R Package. http://cran.r-project.org/package=AOfamilies

  • Dehbi HM, Cortina-Borja M, Geraci M (2016) Aranda-Ordaz quantile regression for student performance assessment. J Appl Stat 43(1):58–71

    Article  MathSciNet  Google Scholar 

  • Espinheira P, Ferrari SLP, Cribari-Neto F (2008a) On beta regression residuals. J Appl Stat 35(4):407–419

    Article  MathSciNet  MATH  Google Scholar 

  • Espinheira PL, Ferrari SLP, Cribari-Neto F (2008b) Influence diagnostics in beta regression. Comput Stat Data Anal 52(9):4417–4431

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari SLP, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31(7):799–815

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari SLP, Pinheiro EC (2011) Improved likelihood inference in beta regression. J Stat Comput Simul 81(4):431–443

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari SLP, Espinheira PL, Cribari-Neto F (2011) Diagnostic tools in beta regression with varying dispersion. Stat Neerl 65(3):337–351

    Article  MathSciNet  MATH  Google Scholar 

  • Geraci M, Jones MC (2015) Improved transformation-based quantile regression. Can J Stat 43(1):118–132

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes GSdS, Ludermir TB (2013) Optimization of the weights and asymmetric activation function family of neural network for time series forecasting. Expert Syst Appl 40(16):6438–6446

    Article  Google Scholar 

  • Guerrero VM, Johnson RA (1982) Use of the Box-Cox transformation with binary response models. Biometrika 69(2):309–314

    Article  MathSciNet  Google Scholar 

  • Kaiser MS (1997) Maximum likelihood estimation of link function parameters. Comput Stat Data Anal 24(1):79–87

    Article  MATH  Google Scholar 

  • Koenker R, Yoon J (2009) Parametric links for binary choice models: a Fisherian-Bayesian colloquy. J Econ 152(2):120–130

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh P, Nelder J (1989) Generalized linear models, 2nd edn. Chapman and Hall, Boca Raton

    Book  MATH  Google Scholar 

  • Morgan BJ (1992) Analysis of quantal response data. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78(3):691–692

    Article  MathSciNet  MATH  Google Scholar 

  • Neyman J, Pearson ES (1928) On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A(1/2):175–240

    Article  MATH  Google Scholar 

  • Oliveira JSC (2013) Detectando má especificação em regressão beta. Master’s thesis, Universidade Federal de Pernanbuco

  • Ospina R, Ferrari SLP (2012) A general class of zero-or-one inflated beta regression models. Comput Stat Data Anal 56(6):1609–1623

    Article  MathSciNet  MATH  Google Scholar 

  • Ospina R, Cribari-Neto F, Vasconcellos KLP (2006) Improved point and interval estimation for a beta regression model. Comput Stat Data Anal 51(2):960–981

    Article  MathSciNet  MATH  Google Scholar 

  • Paolino P (2001) Maximum likelihood estimation of models with beta-distributed dependent variables. Polit Anal 9(4):325–346

    Article  Google Scholar 

  • Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford Science Publications, Oxford

    MATH  Google Scholar 

  • Pereira TL, Cribari-Neto F (2013) Detecting model misspecification in inflated beta regressions. Commun Stat Simul Comput 43(3):631–656

    Article  MathSciNet  MATH  Google Scholar 

  • Pregibon D (1980) Goodness of link tests for generalized linear models. Appl Stat 29(1):15–24

    Article  MATH  Google Scholar 

  • Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, London

    MATH  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

  • Ramalho EA, Ramalho JJ, Murteira JMR (2011) Alternative estimating and testing empirical strategies for fractional regression models. J Econ Surv 25(1):16–68

    Article  Google Scholar 

  • Ramsey JB (1969) Tests for specification errors in classical linear least-squares regression analysis. J R Stat Soc 31(2):350–371

    MathSciNet  MATH  Google Scholar 

  • Rao C (1948) Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math Proc Camb Philos Soc 44(1):50–57

    Article  MathSciNet  MATH  Google Scholar 

  • Rigby R, Stasinopoulos D (2005) Generalized additive models for location, scale and shape (with discussion). Appl Stat 54(3):507–554

    MATH  Google Scholar 

  • Scallan A, Guilchrist R, Green M (1984) Fitting parametric link functions in generalized linear models. Comput Stat Data Anal 2(1):37–49

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Simas AB, Barreto-Souza W, Rocha AV (2010) Improved estimators for a general class of beta regression models. Comput Stat Data Anal 54(2):348–366

    Article  MathSciNet  MATH  Google Scholar 

  • Smith DM (2003) Computing single parameter transformations. Commun Stat Simul Comput 32(3):605–618

  • Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods 11(1):54–71

    Article  Google Scholar 

  • Smyth GK, Verbyla AP (1999) Adjusted likelihood methods for modelling dispersion in generalized linear models. Environmetrics 10(6):695–709

    Article  Google Scholar 

  • Stukel TA (1988) Generalized logistic models. J Am Stat Assoc 83(402):426–431

    Article  MathSciNet  Google Scholar 

  • Taneichi N, Sekiya Y, Toyama J (2014) A new family of parametric links for binomial generalized linear models. J Jpn Stat Soc 44(2):119–133

    Article  MathSciNet  MATH  Google Scholar 

  • Terrell GR (2002) The gradient statistic. Comput Sci Stat 34:206–215

    Google Scholar 

  • Vargas TM, Ferrari SL, Lemonte AJ (2014) Improved likelihood inference in generalized linear models. Comput Stat Data Anal 74:110–124

    Article  MathSciNet  MATH  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54:426–482

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao W, Zhang R, Lv Y, Liu J (2014) Variable selection for varying dispersion beta regression model. J Appl Stat 41(1):95–108

    Article  MathSciNet  Google Scholar 

  • Zimprich D (2010) Modeling change in skewed variables using mixed beta regression models. Res Hum Dev 7(1):9–26

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Mariano Bayer.

Appendix

Appendix

In this appendix we obtain the score function and the Fisher’s information matrix for all parameters (\(\varvec{\beta }\),\(\varvec{\gamma }\),\(\lambda _1\),\(\lambda _2\)).

The elements of the score vector are given by:

$$\begin{aligned} U_{\beta _i}(\varvec{\theta })=\frac{\partial \ell (\varvec{\theta })}{\partial \beta _i}=&\sum \limits _{t=1}^{n}\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\frac{\partial \mu _t}{\partial \eta _{1t}}\frac{\partial \eta _{1t}}{\partial \beta _{i}},\\ U_{\gamma _j}(\varvec{\theta })=\frac{\partial \ell (\varvec{\theta })}{\partial \gamma _j}=&\sum _{t=1}^{n}\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}},\\ U_{\lambda _1}(\varvec{\theta })=\frac{\partial \ell (\varvec{\theta })}{\partial \lambda _1} =&\sum _{t=1}^{n}\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \lambda _1},\\ U_{\lambda _2}(\varvec{\theta })=\frac{\partial \ell (\varvec{\theta })}{\partial \lambda _2} =&\sum _{t=1}^{n}\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \lambda _2}, \end{aligned}$$

for \(i=1,\ldots ,r\) and \(j=1, \ldots , s\), where \(\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t} = \dfrac{1-\sigma ^2_t}{\sigma ^2_t}(y^*_t-\mu ^*_t)\), \(\dfrac{\partial \mu _t}{\partial \eta _{1t}} = \left[ \dfrac{\partial g_1(\mu _{t},\lambda _1)}{\partial \mu _t}\right] ^{-1}\), \(\dfrac{\partial \eta _{1t}}{\partial \beta _{i}}=x_{ti}\), \(\dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}=a_t\), \(\dfrac{\partial \sigma _t}{\partial \eta _{2t}} = \left[ \dfrac{\partial g_2(\sigma _{t},\lambda _2)}{\partial \sigma _t}\right] ^{-1}\) and \(\dfrac{\partial \eta _{2t}}{\partial \gamma _{i}}=z_{tj}\).

The second order derivatives of the log-likelihood function are given by:

$$\begin{aligned} \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \beta _p}&= \sum _{t=1}^{n}\dfrac{\partial }{\partial \mu _t} \left( \dfrac{\partial \ell _t(\mu _t,\sigma _t)}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) \dfrac{\partial \mu _t}{\partial \eta _{1t}} \dfrac{\partial \eta _{1t}}{\partial \beta _p} \dfrac{\partial \eta _{1t}}{\partial \beta _i} \\&= \sum _{t=1}^{n} \left( \dfrac{\partial _2\ell _t(\mu _t,\sigma _t)}{\partial \mu _t^2}\dfrac{\partial \mu _t}{\partial \eta _{1t}} + \dfrac{\partial \ell _t(\mu _t,\sigma _t)}{\partial \mu _t} \dfrac{\partial }{\partial \mu _t} \left( \dfrac{\partial \mu _t}{\partial \eta _{1t}}\right) \right) \\&\quad \times \, \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti}x_{tp}, \; p=1,\ldots ,r,\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \gamma _j}&= \sum _{t=1}^{n} \left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}} \right) \frac{\partial \mu _t}{\partial \eta _{1t}} \frac{\partial \eta _{1t}}{\partial \beta _{i}} \\&=\sum _{t=1}^{n} \left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}\left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj} \right) \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _1}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _1} \left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) \frac{\partial \eta _{1t}}{\partial \beta _{i}}\\&=\sum _{t=1}^{n} \bigg [ \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t^2} \dfrac{\partial \mu _t}{\partial \lambda _1} \dfrac{\partial \mu _t}{\partial \eta _{1t}} + \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t} \dfrac{\partial }{\partial \lambda _1} \left( \dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) \bigg ] x_{ti},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _2}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _2} \left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) \frac{\partial \eta _{1t}}{\partial \beta _{i}}\\&=\sum _{t=1}^{n} \bigg [ \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t} \dfrac{\partial \sigma _t}{\partial \lambda _2} \dfrac{\partial \mu _t}{\partial \eta _{1t}} + \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t} \dfrac{\partial }{\partial \lambda _2} \left( \dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) \bigg ] x_{ti}\\&= \sum _{t=1}^{n} \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t} \varrho _t \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \gamma _l}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \gamma _l}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}} \right) \\&= \sum _{t=1}^{n} \bigg ( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2} \dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}} \dfrac{\partial \sigma _t}{\partial \eta _{2t}} + \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t} \dfrac{\partial }{\partial \gamma _l} \left( \dfrac{\partial \sigma _t}{\partial \eta _{2t}} \right) \bigg )z_{tj},\\ l=1,\ldots ,s,\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _1}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _1}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}} \right) \\&= \sum _{t=1}^{n} \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t\partial \mu _t}\dfrac{\partial \mu _t}{\partial \lambda _1} \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _2}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _2}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \eta _{2t}}\dfrac{\partial \eta _{2t}}{\partial \gamma _{j}} \right) \\&= \sum _{t=1}^{n} \bigg ( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2}\dfrac{\partial \sigma _t}{\partial \lambda _2} \dfrac{\partial \sigma _t}{\partial \eta _{2t}} + \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t} \dfrac{\partial }{\partial \lambda _2}\left( \dfrac{\partial \sigma _t}{\partial \eta _{2t}} \right) \bigg ) z_{tj},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1^2}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _1}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \lambda _1}\right) \\&= \sum _{t=1}^{n} \bigg ( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t^2}\dfrac{\partial \mu _t}{\partial \lambda _1} \dfrac{\partial \mu _t}{\partial \lambda _1} \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t} \dfrac{\partial ^2\mu }{\partial \lambda _1^2} \bigg ),\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1\partial \lambda _2}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _2}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t}\dfrac{\partial \mu _t}{\partial \lambda _1}\right) = \sum _{t=1}^{n} \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \lambda _2} \dfrac{\partial \mu _t}{\partial \lambda _1},\\ \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _2^2}&= \sum _{t=1}^{n} \dfrac{\partial }{\partial \lambda _2}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\dfrac{\partial \sigma _t}{\partial \lambda _2}\right) \\&= \sum _{t=1}^{n} \bigg ( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2}\dfrac{\partial \sigma _t}{\partial \lambda _2} \dfrac{\partial \sigma _t}{\partial \lambda _2} \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t} \dfrac{\partial ^2\sigma }{\partial \lambda _2^2} \bigg ), \end{aligned}$$

where \(\dfrac{\partial }{\partial \lambda _2} \left( \dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) =0\),

$$\begin{aligned} \dfrac{\partial ^2\ell _t(\mu _t,\sigma _t)}{\partial \mu _t^2}&= - \left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) ^2 \bigg [ \psi '\left( \mu _t \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) + \psi '\left( (1-\mu _t) \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \bigg ],\\ \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}&=-\dfrac{2}{\sigma _t^3}(y^*_t-\mu ^*_t) - \dfrac{1-\sigma ^2_t}{\sigma ^2_t}\dfrac{2}{\sigma _t^3} \bigg [ (1-\mu _t)\psi '\left( (1-\mu _t) \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \\&\quad -\,\mu _t\psi '\left( \mu _t \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \bigg ],\\ \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2}&= -\dfrac{4}{\sigma ^6_t}\bigg [-\psi '\left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) + \mu _t^2\psi '\left( \mu _t\dfrac{1-\sigma _t^2}{\sigma _t^2}\right) + (1-\mu _t)^2\\&\quad \times \,\psi '\left( (1-\mu _t)\dfrac{1-\sigma _t^2}{\sigma _t^2}\right) \bigg ] +\dfrac{3}{\sigma _t}\dfrac{2}{\sigma _t^3} \bigg [ \mu _t(y_t^*-\mu _t^*)+\psi \left( \frac{1-\sigma _t^2}{\sigma _t^2}\right) \\&\quad -\,\psi \left( (1-\mu _t)\frac{1-\sigma _t^2}{\sigma _t^2}\right) +\log (1-y_t) \bigg ]. \end{aligned}$$

Taking the expected value of the second order derivatives given above, since \(\mathbb {E}\left( \dfrac{\partial \ell _t(\mu _t,\sigma _t)}{\partial \mu _t} \right) = 0\), we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial \ell (\varvec{\theta })}{\partial \beta _i\partial \beta _p} \right)= & {} \sum _{t=1}^{n} \mathbb {E} \Bigg [ \left( \dfrac{\partial _2\ell _t(\mu _t,\sigma _t)}{\partial \mu _t^2}\left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} \right) \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti}x_{tp} \Bigg ]\\= & {} \sum _{t=1}^{n} \mathbb {E} \left[ \dfrac{\partial _2\ell _t(\mu _t,\sigma _t)}{\partial \mu _t^2}\left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-2} x_{ti}x_{tp} \right] \\= & {} - \sum _{t=1}^{n} \mathbb {E} \Bigg [ \left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) \left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) \bigg [ \psi '\left( \mu _t \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \\&+\, \psi '\left( (1-\mu _t) \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \bigg ]\left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-2} x_{ti}x_{tp} \Bigg ]\\= & {} - \sum _{t=1}^{n} \left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) w_t x_{ti} x_{tp}. \end{aligned}$$

Since

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}\right)&=- \dfrac{1-\sigma ^2_t}{\sigma ^2_t}\dfrac{2}{\sigma _t^3}\bigg [ (1-\mu _t)\psi '\bigg ( (1-\mu _t) \dfrac{1-\sigma _t^2}{\sigma _t^2} \bigg )\\&\quad -\,\mu _t\psi '\left( \mu _t \dfrac{1-\sigma _t^2}{\sigma _t^2} \right) \bigg ], \end{aligned}$$

we arrive at the conclusion that

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \gamma _j}\right)&=-\sum _{t=1}^{n}c_t \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} z_{tj} x_{ti}. \end{aligned}$$

In relation to \(\beta _i\) and \(\lambda _1\), we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _1}\right)&= \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t^2} \dfrac{\partial \mu _t}{\partial \lambda _1} \dfrac{\partial \mu _t}{\partial \eta _{1t}} \right) = \sum _{t=1}^{n} \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t^2} \dfrac{\partial \mu _t}{\partial \lambda _1} \dfrac{\partial \mu _t}{\partial \eta _{1t}} \\&= -\sum _{t=1}^{n} \nu _t \rho _t \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti}. \end{aligned}$$

The expected value of the second order derivative with respect to \(\beta _i\) and \(\lambda _2\) is given by:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _2}\right)&= \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \mu _t\partial \sigma _t}\right) \varrho _t \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti} \\&= \sum _{t=1}^{n} c_t \varrho _t \left( \dfrac{\partial g_1(\mu _t,\lambda _1)}{\partial \mu _t} \right) ^{-1} x_{ti}. \end{aligned}$$

Since \(\mathbb {E}\left( \dfrac{\partial \ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t}\right) =0\), we have

$$\begin{aligned}&\mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \gamma _l}\right) = \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2}\right) \left( \frac{g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-2} z_{tl} z_{tj}, \end{aligned}$$

where

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2}\right)&= -\dfrac{4}{\sigma ^6_t}\bigg [-\psi '\left( \dfrac{1-\sigma _t^2}{\sigma _t^2}\right) + \mu _t^2\psi '\left( \mu _t\dfrac{1-\sigma _t^2}{\sigma _t^2}\right) \\&\quad +\, (1-\mu _t)^2\psi '\left( (1-\mu _t)\dfrac{1-\sigma _t^2}{\sigma _t^2}\right) \bigg ]. \end{aligned}$$

With respect to \(\gamma _j\) and \(\lambda _1\), we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _1}\right)&= \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t\partial \mu _t} \right) \rho _t \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj} \\&= - \sum _{t=1}^{n} c_t \rho _t \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj}. \end{aligned}$$

For \(\gamma _j\) and \(\lambda _2\), we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _2}\right)&= \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _{t}(\mu _{t},\sigma _{t})}{\partial \sigma _t^2} \right) \varrho _t \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj} \\&= - \sum _{t=1}^{n} d_t^* \varrho _t \left( \dfrac{\partial g_2(\sigma _t,\lambda _2)}{\partial \sigma _t} \right) ^{-1} z_{tj}. \end{aligned}$$

Finally, we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1^2}\right)&= -\sum _{t=1}^{n}\nu _t\rho _t\rho _t,\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1\partial \lambda _2}\right)&= \sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _t(\mu _t\sigma _t)}{\partial \mu _t\partial \sigma _t}\right) \varrho _t\rho _t= -\sum _{t=1}^{n} c_t\varrho _t\rho _t, \end{aligned}$$

and

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _2^2}\right) =\sum _{t=1}^{n} \mathbb {E}\left( \dfrac{\partial ^2\ell _t(\mu _t,\sigma _t)}{\partial \sigma _t^2} \right) \varrho _t\varrho _t = -\sum _{t=1}^{n}d_t^*\varrho _t\varrho _t. \end{aligned}$$

In matrix form, we have:

$$\begin{aligned} \mathbb {E}\left( \dfrac{\partial \ell (\varvec{\theta })}{\partial \beta _i\partial \beta _p} \right)&= -\varvec{X}^\top \varvec{\Sigma } \varvec{W}\varvec{X},\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \gamma _j}\right)&=-\varvec{X}^\top \varvec{C}\varvec{T}\varvec{H}\varvec{Z},\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _1}\right)&= -\varvec{X}^\top \varvec{V}\varvec{T}\varvec{\rho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \beta _i\partial \lambda _2}\right)&= -\varvec{X}^\top \varvec{C}\varvec{T}\varvec{\varrho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \gamma _l}\right)&= -\varvec{Z}^\top \varvec{D}^*\varvec{H}\varvec{H}^\top \varvec{Z},\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _1}\right)&= -\varvec{Z}^\top \varvec{C}\varvec{H}\varvec{\rho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \gamma _j\partial \lambda _2}\right)&= -\varvec{Z}^\top \varvec{D}^*\varvec{H}\varvec{\varrho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1^2}\right)&= -\varvec{\rho }^\top \varvec{V}\varvec{\rho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _1\partial \lambda _2}\right)&= -\varvec{\rho }^\top \varvec{C}\varvec{\varrho },\\ \mathbb {E}\left( \dfrac{\partial ^2\ell (\varvec{\theta })}{\partial \lambda _2^2}\right)&= -\varvec{\varrho }^\top \varvec{D}^*\varvec{\varrho }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canterle, D.R., Bayer, F.M. Variable dispersion beta regressions with parametric link functions. Stat Papers 60, 1541–1567 (2019). https://doi.org/10.1007/s00362-017-0885-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-017-0885-9

Keywords

Mathematics Subject Classification

Navigation