Skip to main content
Log in

Bayesian analysis of penalized quantile regression for longitudinal data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper considers penalized quantile regression model for random effects longitudinal data from a Bayesian perspective. The introduction of a large number of individual random effects can significantly inflate the variability of estimates of other covariate effects. To modify this inflation effect a hierarchical Bayesian model is introduced to shrink the individual effects toward the common population values by using the Lasso and adaptive Lasso penalties in the quantile regression check function. A Gibbs sampling algorithm is developed to simulate the parameters from the posterior distributions. The simulation studies and real data analysis indicate that the proposed methods generally perform better in comparison to the other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aghamohammadi.

Appendix

Appendix

Recall that we assume the likelihood to be an asymmetric Laplace distribution, which has a hierarchical representation as follows:

$$\begin{aligned} f(y_{ij}|\varvec{\beta },\alpha _i,e_{ij},\sigma )= & {} (4\pi \sigma e_{ij})^{-1/2}\exp \left\{ -\frac{1}{4\sigma e_{ij}}(y_{ij}-\varvec{x}'_{ij}\varvec{\beta }-\alpha _i-(1-2\tau )e_{ij})^2\right\} \\ f(e_{ij}|\sigma )= & {} \frac{\tau (1-\tau )}{\sigma }\exp \left\{ -\frac{\tau (1-\tau )}{\sigma }e_{ij}\right\} . \end{aligned}$$

Under the above expression and hierarchical model (5), the posterior distribution of all parameters is given by

$$\begin{aligned}&\pi (\varvec{\beta },\varvec{\alpha },\varvec{e},\varvec{s}, v^2,\phi ,\sigma |\varvec{y})\\&\quad \propto \,\prod _{i=1}^{n} \prod _{j=1}^{m_i}\left( \frac{1}{\sigma \sqrt{\sigma e_{ij}}}\right) \exp \left\{ \sum _{i=1}^{n}\sum _{j=1}^{m_i} -\frac{(y_{ij}-\varvec{x}'_{ij}\varvec{\beta }-\alpha _i-(1-2\tau )e_{ij})^2}{4\sigma e_{ij}} -\frac{\tau (1-\tau )}{\sigma }e_{ij}\right\} \\&\qquad \times \,\exp \left\{ -\frac{1}{2}(\varvec{\beta }-\varvec{b_0})'\varvec{B}_0^{-1}(\varvec{\beta }-\varvec{b}_0)\right\} \prod _{i=1}^{n}\frac{1}{\sqrt{s_i}}\exp (-\alpha _i^2/2s_i)\frac{v^2}{2}\exp \left\{ -v^2s_i/2\right\} \\&\qquad \times \,\phi \exp \{-v^2\phi \}\frac{1}{\phi }\left( \frac{1}{\sigma }\right) ^{c_0+1}\exp \left\{ -\frac{d_0}{\sigma }\right\} , \end{aligned}$$

where \( \varvec{s}=(s_1,\ldots ,s_n) \) and \( \varvec{e}=(e_{11},\ldots ,e_{1m_1},\ldots ,e_{nm_n})\). From the above expression, it is easy to deduce the full conditional posterior distributions of unknown parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamohammadi, A., Mohammadi, S. Bayesian analysis of penalized quantile regression for longitudinal data. Stat Papers 58, 1035–1053 (2017). https://doi.org/10.1007/s00362-015-0737-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0737-4

Keywords

Mathematics Subject Classification

Navigation