Skip to main content
Log in

On estimation of a density function in multiplicative censoring

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper considers non-parametric density estimation in the context of multiplicative censoring. A new estimator for the density function is proposed and consistency of the proposed estimator is investigated. Simulations are drawn to illustrate the results and to show how the estimator behaves for finite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaszadeh M, Chesneau C, Doosti H (2012) Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods. Stat Probab Lett 82:932–941

  • Abbaszadeh M, Chesneau C, Doosti H (2013) Multiplicative censoring: estimation of a density and its derivatives under the \(L_p\)-risk. REVSTAT Stat J 11(3):255–276

  • Andersen KE, Hansen MB (2001) Multiplicative censoring: density estimation by a series expansion approach. J Stat Plan Inference 98:137–155

    Article  MathSciNet  Google Scholar 

  • Asgharian M, Carone M, Fakoor V (2012) Large-sample study of the kernel density estimators under multiplicative censoring. Ann Stat 82:932–941

  • Csörgő S (1985) Rates of uniform convergence for the empirical characteristic function. Acta Sci Math 48:97–102

    Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  Google Scholar 

  • Roenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27:832–837

    Article  Google Scholar 

  • Stute W (1982) A law of the logarithm for kernel density estimators. Ann Probab 10(2):414–422

    Article  MathSciNet  Google Scholar 

  • Stefanski LA, Carroll RJ (1990) Deconvoluting kernel density estimators. Statistics 21:169–184

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall/CRC, London

  • Vardi Y (1989) Multiplicative censoring, renewal process, deconvolution and decreasing density: nonparametric estimation. Biometrika 76(4):751–761

    Article  MathSciNet  Google Scholar 

  • Vardi Y, Zhang C-H (1992) Large sample study of empirical distributions in a random-multiplicative censoring model. Ann Stat 20:1022–1039

    Article  MathSciNet  Google Scholar 

  • Wied D, Weißbach R (2010) Consistency of the kernel density estimator—a survey. Stat Pap 53(1):1–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Fakoor.

Appendices

Appendix A: Proofs of the main results

Proof of Theorem 1

Under \({\mathbf {K(1)}},\) \(\mathbf {H(2)}\) and according to Lemma 7.1 we have

$$\begin{aligned} \lim _{m\rightarrow \infty }E\left( \check{g}_{m}(x)\right) =g(x). \end{aligned}$$
(6.1)

Let

$$\begin{aligned} q^{*}_{n}(z)=\frac{1}{nh_{n}}\sum _{i=1}^{n}K_{2}\left( \frac{z-T_{i}}{h_{n}}\right) , \end{aligned}$$

be an ordinary kernel density estimator function of \(q\), that is defiend by (2.1), and based on the sample of \((T_1,\ldots ,T_n)\) where \(T_i=-\ln Z_i.\) An interchange of expectation and integration, justified by Fubini’s Theorem and \(\mathbf { K(3)},\) show that

$$\begin{aligned} E\left( K_*\left( \frac{(z -W_{1})}{h_{n}}\right) \left| \right. T_{1}\right) =K_{2}\left( \frac{z-T_{1}}{h_{n}}\right) . \end{aligned}$$
(6.2)

Then it follows from (6.2) that

$$\begin{aligned} E\left( q_{n}(z)\right) =E\left( q^{*}_{n}(z)\right) . \end{aligned}$$

Thus \(q_{n}\) has the same bias as the ordinary kernel density estimator \(q^{*}_{n}\). \({\mathbf {K(1)}}, {{\mathbf {H(1)}}}\) and Lemma 7.1 follow

$$\begin{aligned} \lim _{n\rightarrow \infty }E\left( q^{*}_{n}(z )\right) =q(z), \end{aligned}$$

hence

$$\begin{aligned} \lim _{n\rightarrow \infty }E\left( \tilde{g}_{n}(x)\right)&= \frac{1}{x}\lim _{n\rightarrow \infty }E\left( q^{*}_{n}(-\ln x)\right) \nonumber \\&= \frac{1}{x} q(-\ln x)\nonumber \\&= g(x). \end{aligned}$$
(6.3)

Therefore from (6.1), (6.3) and Assumption \({\mathbf {P}}\), we have

$$\begin{aligned} \lim _{k \rightarrow \infty }E\left( \hat{g}_k(x)\right)&= p\lim _{m\rightarrow \infty }E\left( \check{g}_{m}(x)\right) + (1-p) \lim _{n\rightarrow \infty }E\left( \tilde{g}_{n}(x)\right) \nonumber \\&= p g(x)+(1-p) g(x) \nonumber \\&= g(x) \end{aligned}$$
(6.4)

Assumption \({{\mathbf {H(2)}}}\) and Lemma 7.2 follow that

$$\begin{aligned} \lim _{m \rightarrow \infty }var(\check{g}_{m}(x))=0. \end{aligned}$$
(6.5)

By proof of Theorem 2.1 of Stefanski and Carroll (1990), \({\mathbf {K(2)-K(4)}}\) and \({\mathbf {H(1)}}\), we have

$$\begin{aligned} \lim _{ n\rightarrow \infty }var(\tilde{g}_{n}(x))=0. \end{aligned}$$
(6.6)

It can be easily seen that

$$\begin{aligned} var(\hat{g}_k(x))={\hat{p}}^2 var(\check{g}_m(x))+(1-\hat{p} )^2 var(\tilde{g}_n(x)), \end{aligned}$$
(6.7)

so by combining (6.5), (6.6) we have

$$\begin{aligned} \lim _{k\rightarrow \infty }var(\hat{g}_k(x))=0. \end{aligned}$$
(6.8)

Finally, (6.4) and (6.8) complete the proof. \(\square \)

Proof of Theorem 2

It is easy to see that

$$\begin{aligned} \sup _{\epsilon <x<\tau -\epsilon }\left| \hat{g}_k(x)-g(x)\right|&\le \hat{p} \sup _{\epsilon <x<\tau -\epsilon }\left| \check{g}_{m}(x)-g(x)\right| \nonumber \\&+ (1-\hat{p}) \sup _{\epsilon <x<\tau -\epsilon }\left| \tilde{g}_{n}(x)-g(x)\right| .\nonumber \\&:= I_{1}+I_{2}. \end{aligned}$$
(6.9)

From G(1), G(2), H(3), K(1) and Lemma 7.3 we have

$$\begin{aligned} I_{1}=O\left( \sqrt{\frac{\ln \frac{1}{h_{m}} }{mh_{m}}}\,\,\right) +O\left( h^{2}_{m}\right) ,\quad a.s. \end{aligned}$$
(6.10)

For \(I_{2}\) first we have

$$\begin{aligned} \sup _{\epsilon <x<\tau -\epsilon }\left| \tilde{g}_{n}(x)-g(x)\right|&\le \frac{1}{\epsilon }\sup _{\epsilon <x<\tau -\epsilon }\left| q_{n}(-\ln x)-E(q_{n}(-\ln x))\right| \nonumber \\&+\frac{1}{\epsilon }\sup _{\epsilon <x<\tau -\epsilon }\left| E(q_{n}(-\ln x))-q(-\ln x))\right| \nonumber \\&:= I_{3}+I_{4}. \end{aligned}$$
(6.11)

Let \(W_i\) has density function \(f^*\) with characteristic function \(\Psi _{f^{*}}.\) Since \(\Psi _{K_{2}}\) is vanished out of \([-1,1]\), we have

$$\begin{aligned} q_{n}(x)-E\left( q_{n}(x)\right) =\frac{1}{2\pi }\int \limits _{-\frac{1}{h_{n}}}^{\frac{1}{h_{n}}}e^{-itx}\left( \hat{\Psi }_{f^*} (t)-\Psi _{f^{*}}(t)\right) \Psi _{K_{2}}(h_{n}t)\left( 1-it\right) dt,\nonumber \\ \end{aligned}$$
(6.12)

where

$$\begin{aligned} \hat{\Psi }_{f^{*}}(t)=\frac{1}{n}\sum _{j=1}^{n}e^{itW_{j}}, \end{aligned}$$

hence

$$\begin{aligned} I_{3}&\le \frac{1}{2\pi }\sup _{|t|\le \frac{1}{h_{n}}}\left| \hat{\Psi }_{f^*}(t)-\Psi _{f^{*}}(t)\right| \int \limits _{-1}^{+1} \left| \Psi _{K_{2}}(u)\left( \frac{1}{h_{n}}-\frac{i u}{{h}^{2}_{n}}\right) \right| du\\&= \frac{1}{2\pi }\Delta _{n}\int \limits _{-1}^{+1} \left| \Psi _{K_{2}}(u)\left( \frac{1}{h_{n}}-\frac{i u}{{h}^{2}_{n}}\right) \right| du, \end{aligned}$$

where

$$\begin{aligned} \Delta _{n}=\sup _{|t|\le \frac{1}{h_{n}}}\left| \hat{\Psi }_{f^*}(t)-\Psi _{f^{*}}(t)\right| . \end{aligned}$$

Lemma 7.4 implies that

$$\begin{aligned} \Delta _{n}=O\left( \sqrt{\frac{\ln n}{n}}\right) \quad a.s., \end{aligned}$$

hence using Assumption \({\mathbf {K(3)}}\) we have

$$\begin{aligned} I_{3}=O\left( \sqrt{\frac{\ln n}{n h^{4}_{n}}}\right) \quad a.s. \end{aligned}$$
(6.13)

Using \(\mathbf G(1) \) and \( \mathbf K(1) \),

$$\begin{aligned} I_{4}=O\left( h^{2}_n\right) \quad a.s. \end{aligned}$$
(6.14)

Now (6.11), (6.13) and (6.14) yield

$$\begin{aligned} I_{2}=O\left( \sqrt{\frac{\ln n}{nh^{4}_{n}}}\right) +O\left( h^{2}_{n}\right) . \end{aligned}$$
(6.15)

(6.9), (6.10), and (6.15) complete the proof. \(\square \)

Appendix B

In this section, we consider the kernel density estimator \(f_n\) of a univariate density \(f\) introduced by Roenblatt (1956),

$$\begin{aligned} f_{n}(x)=\frac{1}{na_{n}}\sum _{j=1}^{n}K\left( \frac{x-\xi _{j}}{a_{n}}\right) , \end{aligned}$$
(7.1)

where \(\xi _{1},\xi _{2},\ldots ,\xi _{n}\) are independent observations from distribution \(F\) with density function \(f\). \(K,\) \(a_n\) and \(F_n\) are kernel function, a bandwidth and empirical distribution function, respectively. Also, the characteristic function of \(f\) and its empirical are denoted by

$$\begin{aligned} \Psi _{f}(t)=\int \limits _{\mathbb {R}}e^{itx}f(x) dx,\quad t \in \mathbb {R} \end{aligned}$$

and

$$\begin{aligned} \Psi _{n}(t)=\int \limits _{\mathbb {R}}e^{itx}dF_{n}(t),\quad t \in \mathbb {R}. \end{aligned}$$

Lemma 7.1

(Corollary 1A, Parzen (1962)). The estimator defined by (7.1) is asymptotically unbiased at all points \(x\) at which the probability density function is continuous if the constants \(a_{n}\) satisfy \(\lim _{n \longrightarrow \infty }a_{n}=0\) and if the function \(K(\cdot )\) satisfies

$$\begin{aligned} \sup _{-\infty <y <\infty } |K(y)|<\infty , \end{aligned}$$
(7.2)
$$\begin{aligned} \int \limits _{-\infty }^{\infty }|K(y)|dy <\infty , \end{aligned}$$
(7.3)
$$\begin{aligned} \lim _{y \longrightarrow \infty } |y K(y)|=0, \end{aligned}$$
(7.4)

and

$$\begin{aligned} \int \limits _{-\infty }^{\infty }K(y)dy=1. \end{aligned}$$
(7.5)

\(\square \)

Lemma 7.2

(Theorem 2A, Parzen (1962)) The estimates defined by (7.1) have variances satisfying

$$\begin{aligned} \lim _{n \longrightarrow \infty }n a_{n} Var (f_{n}(x))=f(x)\int \limits _{-\infty }^{\infty }K^{2}(y)dy \end{aligned}$$

at all points \(x\) of continuity of \(f(x),\) if \(\lim _{n \longrightarrow \infty } a_{n}=0\) and the function \(K\) satisfies (7.2) and (7.3). \(\square \)

Lemma 7.3

(Theorem 1.2., Stute (1982)) Let \(K\) be of bounded variation and suppose that \(K(x)=0\) outside some finite interval \([r,s)\). If

$$\begin{aligned} \sup _{x,y \in J, x\ne y}\frac{|F(x)-F(y)|}{|x-y|}<M<\infty , \end{aligned}$$

with \(J=(a, b),\) then for each \(\epsilon >0\) and every bandsequence \((a_{n})\), where \(\lim _{n\rightarrow \infty }\) \(a_{n}=0\) and    \(\lim _{n \rightarrow \infty }\frac{\ln ({a^{-1}_{n}})}{na_{n}}=0,\) we have

$$\begin{aligned} \limsup _{n\longrightarrow \infty }\sqrt{\frac{n a_{n}}{2\ln a^{-1}_{n}}}\sup _{t \in J_{\epsilon }}\left| f_{n}(t)-E(f_{n}(t))\right| =C\quad a.s., \end{aligned}$$

where \(J_{\epsilon }=(a+\epsilon , b-\epsilon )\) and \(C\) is a constant. \(\square \)

Lemma 7.4

(Example (1), Csörgő (1985)) Suppose that \(P\left( |\xi |>x\right) \le Lx^{-\alpha }\) for all large enough \(x,\) where \(L\) and \(\alpha \) are arbitrary positive constants. Then for any \(A>0\)

$$\begin{aligned} \limsup _{n\longrightarrow \infty }\sqrt{\frac{n}{\ln n}}\Delta _{n}(n^{A})\le C), \end{aligned}$$

where \(C\) is a positive constant and

$$\begin{aligned} \Delta _{n}(T)=\sup _{|t|<T}\left| \Psi _{n}(t)-\Psi _{f}(t)\right| \end{aligned}$$

for any extended number \(0<T\le \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamini, R., Fakoor, V. & Sarmad, M. On estimation of a density function in multiplicative censoring. Stat Papers 56, 661–676 (2015). https://doi.org/10.1007/s00362-014-0602-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-014-0602-x

Keywords

Navigation